27 research outputs found

    Soluble Rhesus Lymphocryptovirus gp350 Protects against Infection and Reduces Viral Loads in Animals that Become Infected with Virus after Challenge

    Get PDF
    Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans

    Co-Regulation of NF-κB and Inflammasome-Mediated Inflammatory Responses by Myxoma Virus Pyrin Domain-Containing Protein M013

    Get PDF
    NF-κB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV), a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD) superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1β and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO), in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-κB. The induction of these NF-κB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IκBα, which was followed by nuclear translocation of NF-κB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-κB-mediated reporter gene expression and nuclear translocation of NF-κB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-κB1, suggesting a direct physical and functional linkage between NF-κB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-κB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1β. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-κB-mediated pro-inflammatory responses

    Insertion of Vaccinia Virus C7L Host Range Gene into NYVAC-B Genome Potentiates Immune Responses against HIV-1 Antigens

    Get PDF
    Background: The highly attenuated vaccinia virus strain NYVAC expressing HIV-1 components has been evaluated as a vaccine candidate in preclinical and clinical trials with encouraging results. We have previously described that the presence of C7L in the NYVAC genome prevents the induction of apoptosis and renders the vector capable of replication in human and murine cell lines while maintaining an attenuated phenotype in mice. Methodology/Principal Findings: In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses four HIV-1 antigens from clade B (Env, Gag, Pol and Nef) (referred as NYVAC-B-C7L). In the present study, we have compared the in vitro and in vivo behavior of NYVAC-B and NYVAC-B-C7L. In cultured cells, NYVAC-B-C7L expresses higher levels of heterologous antigen than NYVAC-B as determined by Western blot and fluorescent-activated cell sorting to score Gag expressing cells. In a DNA prime/poxvirus boost approach with BALB/c mice, both recombinants elicited robust, broad and multifunctional antigen-specific T-cell responses to the HIV-1 immunogens expressed from the vectors. However, the use of NYVAC-B-C7L as booster significantly enhanced the magnitude of the T cell responses, and induced a more balanced cellular immune response to the HIV-1 antigens in comparison to that elicited in animals boosted with NYVAC-B. Conclusions/Significance: These findings demonstrate the possibility to enhance the immunogenicity of the highl

    Axonal Neuregulin 1 Type III Activates NF-κB in Schwann Cells during Myelin Formation*

    No full text
    The formation of myelin requires a series of complex signaling events initiated by the axon to surrounding glial cells, which ultimately respond by tightly wrapping the axon with layers of specialized plasma membrane thereby allowing for saltatory conduction. Activation of the transcription factor NF-κB in Schwann cells has been suggested to be critical for these cells to differentiate into a myelinating phenotype; however, the mechanisms by which it is activated have yet to be elucidated. Here, we demonstrate that axonal membranes are sufficient to promote NF-κB activation in cultured Schwann cells and identify neuregulin 1 (NRG1), specifically the membrane-bound type III isoform, as the signal responsible for activating this transcription factor. Surprisingly, neither membrane-bound type I nor the soluble NRG1 EGF domain could activate NF-κB, indicating that type III induces a qualitatively unique signal. The transcriptional activity of NF-κB was significantly enhanced by treatment with forskolin, indicating these two signals converge for maximal activation. Both ErbB2 and -3 receptors were required for transducing the NRG1 signal, because gene deletion of ErbB3 in Schwann cells or treatment with the ErbB2 selective inhibitor, PKI-166, prevented the stimulation of NF-κB by axonal membranes. Finally, PKI-166 blocked the activation of the transcription factor in myelinating neuron/Schwann cell co-cultures and in vivo, in developing sciatic nerves. Taken together, these data establish NRG1 type III as the activator of NF-κB during myelin formation
    corecore