1,597 research outputs found

    Stellar Kinematics of the Andromeda II Dwarf Spheroidal Galaxy

    Full text link
    We present kinematical profiles and metallicity for the M31 dwarf spheroidal (dSph) satellite galaxy Andromeda II (And II) based on Keck DEIMOS spectroscopy of 531 red giant branch stars. Our kinematical sample is among the largest for any M31 satellite and extends out to two effective radii (r_eff = 5.3' = 1.1 kpc). We find a mean systemic velocity of -192.4+-0.5 km/s and an average velocity dispersion of sigma_v = 7.8+-1.1 km/s. While the rotation velocity along the major axis of And II is nearly zero (<1 km/s), the rotation along the minor axis is significant with a maximum rotational velocity of v_max=8.6+-1.8 km/s. We find a kinematical major axis, with a maximum rotational velocity of v_max=10.9+-2.4 km/s, misaligned by 67 degrees to the isophotal major axis. And II is thus the first dwarf galaxy with evidence for nearly prolate rotation with a v_max/sigma_v = 1.1, although given its ellipticity of epsilon = 0.10, this object may be triaxial. We measured metallicities for a subsample of our data, finding a mean metallicity of [Fe/H] = -1.39+- 0.03 dex and an internal metallicity dispersion of 0.72+-0.03 dex. We find a radial metallicity gradient with metal-rich stars more centrally concentrated, but do not observe a significant difference in the dynamics of two metallicity populations. And II is the only known dwarf galaxy to show minor axis rotation making it a unique system whose existence offers important clues on the processes responsible for the formation of dSphs.Comment: 14 pages, 10 figures, 4 tables, accepted for publication in Ap

    Accurate masses for dispersion-supported galaxies

    Full text link
    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analyzing resolved line-of-sight velocity data for globular clusters, dwarf galaxies, and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the dynamical mass enclosed within the 3D deprojected half-light radius r_1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy. We find M_1/2 = 3 \sigma_los^2 r_1/2 / G ~ 4 \sigma_los^2 R_eff / G, where \sigma_los^2 is the luminosity-weighted square of the line-of-sight velocity dispersion and R_eff is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of mass approximately 3 x 10^9 M_sun in Lambda CDM cosmology. The faintest MW dSphs seem to have formed in dark matter halos that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their I-band mass-to-light ratios (M/L). The M/L vs. M_1/2 relation for dispersion-supported galaxies follows a U-shape, with a broad minimum near M/L ~ 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to M/L ~ 3,200 for ultra-faint dSphs, and a more shallow rise to M/L ~ 800 for galaxy cluster spheroids.Comment: 20 pages, 13 figures. Accepted to MNRAS on March 27th, 201

    The SPLASH Survey: Kinematics of Andromeda's Inner Spheroid

    Full text link
    The combination of large size, high stellar density, high metallicity, and Sersic surface brightness profile of the spheroidal component of the Andromeda galaxy (M31) within R_proj ~ 20 kpc suggest that it is unlike any subcomponent of the Milky Way. In this work we capitalize on our proximity to and external view of M31 to probe the kinematical properties of this "inner spheroid." We employ a Markov chain Monte Carlo (MCMC) analysis of resolved stellar kinematics from Keck/DEIMOS spectra of 5651 red giant branch stars to disentangle M31's inner spheroid from its stellar disk. We measure the mean velocity and dispersion of the spheroid in each of five spatial bins after accounting for a locally cold stellar disk as well as the Giant Southern Stream and associated tidal debris. For the first time, we detect significant spheroid rotation (v_rot ~ 50 km/s) beyond R_proj ~ 5 kpc. The velocity dispersion decreases from about 140 km/s at R_proj = 7 kpc to 120 km/s at R_proj = 14 kpc, consistent to 2 sigma with existing measurements and models. We calculate the probability that a given star is a member of the spheroid and find that the spheroid has a significant presence throughout the spatial extent of our sample. Lastly, we show that the flattening of the spheroid is due to velocity anisotropy in addition to rotation. Though this suggests that the inner spheroid of M31 more closely resembles an elliptical galaxy than a typical spiral galaxy bulge, it should be cautioned that our measurements are much farther out (2 - 14 r_eff) than for the comparison samples.Comment: Accepted for publication in Ap

    A MegaCam Survey of Outer Halo Satellites. VII. A Single S\'ersic Index v/s Effective Radius Relation for Milky Way Outer Halo Satellites

    Full text link
    In this work we use structural properties of Milky Way's outer halo (RG>25kpcR_G > 25\,\mathrm{kpc}) satellites (dwarf spheroidal galaxies, ultra-faint dwarf galaxies and globular clusters) derived from deep, wide-field and homogeneous data, to present evidence of a correlation in the S\'ersic index v/s effective radius plane followed by a large fraction of outer halo globular clusters and satellite dwarf galaxies. We show that this correlation can be entirely reproduced by fitting empirical relations in the central surface brightness v/s absolute magnitude and S\'ersic index v/s absolute magnitude parameter spaces, and by assuming the existence of two types of outer halo globular clusters: one of high surface brightness (HSB group), with properties similar to inner halo clusters; and another of low surface brightness (LSB group), which share characteristics with dwarf spheroidal and ultra-faint dwarf galaxies. Given the similarities of LSB clusters with dwarf spheroidal and ultra-faint dwarf galaxies, we discuss the possibility that outer halo clusters also originated inside dark matter halos and that tidal forces from different galaxy host's potentials are responsible for the different properties between HSB and LSB clusters.Comment: 20 pages, 9 figures, 3 table

    A Megacam Survey of Outer Halo Satellites. IV. Two foreground populations possibly associated with the Monoceros substructure in the direction of NGC2419 and Koposov2

    Get PDF
    The origin of the Galactic halo stellar structure known as the Monoceros ring is still under debate. In this work, we study that halo substructure using deep CFHT wide-field photometry obtained for the globular clusters NGC2419 and Koposov2, where the presence of Monoceros becomes significant because of their coincident projected position. Using Sloan Digital Sky Survey photometry and spectroscopy in the area surrounding these globulars and beyond, where the same Monoceros population is detected, we conclude that a second feature, not likely to be associated with Milky Way disk stars along the line-of-sight, is present as foreground population. Our analysis suggests that the Monoceros ring might be composed of an old stellar population of age t ~ 9Gyr and a new component ~ 4Gyr younger at the same heliocentric distance. Alternatively, this detection might be associated with a second wrap of Monoceros in that direction of the sky and also indicate a metallicity spread in the ring. The detection of such a low-density feature in other sections of this halo substructure will shed light on its nature.Comment: 10 pages, 10 figures, accepted for publication in Ap

    The Baryon Content of Extremely Low Mass Dwarf Galaxies

    Get PDF
    We investigate the gas content and baryonic Tully-Fisher relationship for extremely low luminosity dwarf galaxies in the absolute magnitude range -13.5 > Mr > -16. The sample is selected from the Sloan Digital Sky Survey and consists of 101 galaxies for which we have obtained follow-up HI observations using the Arecibo Observatory and Green Bank Telescope. This represents the largest homogeneous sample of dwarfs at low luminosities with well-measured HI and optical properties. The sample spans a range of environments, from dense groups to truly isolated galaxies. The average neutral gas fraction is f_gas=0.6, significantly exceeding that of typical gas-rich galaxies at higher luminosities. Dwarf galaxies are therefore less efficient at turning gas into stars over their lifetimes. The strong environmental dependence of the gas fraction distribution demonstrates that while internal processes can reduce the gas fractions to roughly f_gas=0.4, external processes are required to fully remove gas from a dwarf galaxy. The average rotational velocity of our sample is vrot=50 km/s. Including more massive galaxies from the literature, we fit a baryonic Tully-Fisher slope of M_baryon \propto vrot^(3.70+/- 0.15). This slope compares well with CDM models that assume an equal baryon to dark matter ratio at all masses. While gas stripping or other processes may modify the baryon to dark matter ratio for dwarfs in the densest environments, the majority of dwarf galaxies in our sample have not preferentially lost significant baryonic mass relative to more massive galaxies.Comment: 33 pages, 8 figures. Accepted to ApJ. Data available at http://www.ociw.edu/~mgeha/researc

    A MegaCam Survey of Outer Halo Satellites. VI: The Spatially Resolved Star Formation History of the Carina Dwarf Spheroidal Galaxy

    Get PDF
    We present the spatially resolved star formation history (SFH) of the Carina dwarf spheroidal galaxy, obtained from deep, wide-field g,r imaging and a metallicity distribution from the literature. Our photometry covers 2\sim2 deg2^2, reaching up to 10\sim10 times the half-light radius of Carina with a completeness higher than 50%50\% at g24.5g\sim24.5, more than one magnitude fainter than the oldest turnoff. This is the first time a combination of depth and coverage of this quality has been used to derive the SFH of Carina, enabling us to trace its different populations with unprecedented accuracy. We find that Carina's SFH consists of two episodes well separated by a star formation temporal gap. These episodes occurred at old (>10>10 Gyr) and intermediate (22-88 Gyr) ages. Our measurements show that the old episode comprises the majority of the population, accounting for 54±5%54\pm5\% of the stellar mass within 1.31.3 times the King tidal radius, while the total stellar mass derived for Carina is 1.60±0.09×106M1.60\pm0.09\times 10^{6} M_{\rm{\odot}}, and the stellar mass-to-light ratio 1.8±0.21.8\pm0.2. The SFH derived is consistent with no recent star formation which hints that the observed blue plume is due to blue stragglers. We conclude that the SFH of Carina evolved independently of the tidal field of the Milky Way, since the frequency and duration of its star formation events do not correlate with its orbital parameters. This result is supported by the age/metallicity relation observed in Carina, and the gradients calculated indicating that outer regions are older and more metal poor.Comment: Accepted in ApJ (22 pages, 13 figures

    On time dilation in quasar light curves

    Full text link
    In this paper we set out to measure time dilation in quasar light curves. In order to detect the effects of time dilation, sets of light curves from two monitoring programmes are used to construct Fourier power spectra covering timescales from 50 days to 28 years. Data from high and low redshift samples are compared to look for the changes expected from time dilation. The main result of the paper is that quasar light curves do not show the effects of time dilation. Several explanations are discussed, including the possibility that time dilation effects are exactly offset by an increase in timescale of variation associated with black hole growth, or that the variations are caused by microlensing in which case time dilation would not be expected.Comment: 8 pages, 5 figures. Accepted for publication in MNRAS. Published online 9 April 2010
    corecore