387 research outputs found
Learning a Static Analyzer from Data
To be practically useful, modern static analyzers must precisely model the
effect of both, statements in the programming language as well as frameworks
used by the program under analysis. While important, manually addressing these
challenges is difficult for at least two reasons: (i) the effects on the
overall analysis can be non-trivial, and (ii) as the size and complexity of
modern libraries increase, so is the number of cases the analysis must handle.
In this paper we present a new, automated approach for creating static
analyzers: instead of manually providing the various inference rules of the
analyzer, the key idea is to learn these rules from a dataset of programs. Our
method consists of two ingredients: (i) a synthesis algorithm capable of
learning a candidate analyzer from a given dataset, and (ii) a counter-example
guided learning procedure which generates new programs beyond those in the
initial dataset, critical for discovering corner cases and ensuring the learned
analysis generalizes to unseen programs.
We implemented and instantiated our approach to the task of learning
JavaScript static analysis rules for a subset of points-to analysis and for
allocation sites analysis. These are challenging yet important problems that
have received significant research attention. We show that our approach is
effective: our system automatically discovered practical and useful inference
rules for many cases that are tricky to manually identify and are missed by
state-of-the-art, manually tuned analyzers
Formal Verification of Neural Network Controlled Autonomous Systems
In this paper, we consider the problem of formally verifying the safety of an
autonomous robot equipped with a Neural Network (NN) controller that processes
LiDAR images to produce control actions. Given a workspace that is
characterized by a set of polytopic obstacles, our objective is to compute the
set of safe initial conditions such that a robot trajectory starting from these
initial conditions is guaranteed to avoid the obstacles. Our approach is to
construct a finite state abstraction of the system and use standard
reachability analysis over the finite state abstraction to compute the set of
the safe initial states. The first technical problem in computing the finite
state abstraction is to mathematically model the imaging function that maps the
robot position to the LiDAR image. To that end, we introduce the notion of
imaging-adapted sets as partitions of the workspace in which the imaging
function is guaranteed to be affine. We develop a polynomial-time algorithm to
partition the workspace into imaging-adapted sets along with computing the
corresponding affine imaging functions. Given this workspace partitioning, a
discrete-time linear dynamics of the robot, and a pre-trained NN controller
with Rectified Linear Unit (ReLU) nonlinearity, the second technical challenge
is to analyze the behavior of the neural network. To that end, we utilize a
Satisfiability Modulo Convex (SMC) encoding to enumerate all the possible
segments of different ReLUs. SMC solvers then use a Boolean satisfiability
solver and a convex programming solver and decompose the problem into smaller
subproblems. To accelerate this process, we develop a pre-processing algorithm
that could rapidly prune the space feasible ReLU segments. Finally, we
demonstrate the efficiency of the proposed algorithms using numerical
simulations with increasing complexity of the neural network controller
Cavity-based single atom preparation and high-fidelity hyperfine state readout
We prepare and detect the hyperfine state of a single 87Rb atom coupled to a
fiber-based high finesse cavity on an atom chip. The atom is extracted from a
Bose-Einstein condensate and trapped at the maximum of the cavity field,
resulting in a reproducibly strong atom-cavity coupling. We use the cavity
reflection and transmission signal to infer the atomic hyperfine state with a
fidelity exceeding 99.92% in a read-out time of 100 microseconds. The atom is
still trapped after detection.Comment: 5 pages, 4 figure
Quantum interference from remotely trapped ions
We observe quantum interference of photons emitted by two continuously
laser-excited single ions, independently trapped in distinct vacuum vessels.
High contrast two-photon interference is observed in two experiments with
different ion species, calcium and barium. Our experimental findings are
quantitatively reproduced by Bloch equation calculations. In particular, we
show that the coherence of the individual resonance fluorescence light field is
determined from the observed interference
Fast cavity-enhanced atom detection with low noise and high fidelity
Cavity quantum electrodynamics describes the fundamental interactions between
light and matter, and how they can be controlled by shaping the local
environment. For example, optical microcavities allow high-efficiency detection
and manipulation of single atoms. In this regime fluctuations of atom number
are on the order of the mean number, which can lead to signal fluctuations in
excess of the noise on the incident probe field. Conversely, we demonstrate
that nonlinearities and multi-atom statistics can together serve to suppress
the effects of atomic fluctuations when making local density measurements on
clouds of cold atoms. We measure atom densities below 1 per cavity mode volume
near the photon shot-noise limit. This is in direct contrast to previous
experiments where fluctuations in atom number contribute significantly to the
noise. Atom detection is shown to be fast and efficient, reaching fidelities in
excess of 97% after 10 us and 99.9% after 30 us.Comment: 7 pages, 4 figures, 1 table; extensive changes to format and
discussion according to referee comments; published in Nature Communications
with open acces
Observation of squeezed light from one atom excited with two photons
Single quantum emitters like atoms are well-known as non-classical light
sources which can produce photons one by one at given times, with reduced
intensity noise. However, the light field emitted by a single atom can exhibit
much richer dynamics. A prominent example is the predicted ability for a single
atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or
phase fluctuations. It has long been foreseen, though, that such squeezing
would be "at least an order of magnitude more difficult" to observe than the
emission of single photons. Squeezed beams have been generated using
macroscopic and mesoscopic media down to a few tens of atoms, but despite
experimental efforts, single-atom squeezing has so far escaped observation.
Here we generate squeezed light with a single atom in a high-finesse optical
resonator. The strong coupling of the atom to the cavity field induces a
genuine quantum mechanical nonlinearity, several orders of magnitude larger
than for usual macroscopic media. This produces observable quadrature squeezing
with an excitation beam containing on average only two photons per system
lifetime. In sharp contrast to the emission of single photons, the squeezed
light stems from the quantum coherence of photon pairs emitted from the system.
The ability of a single atom to induce strong coherent interactions between
propagating photons opens up new perspectives for photonic quantum logic with
single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages,
2 figures). Revised versio
Intensity correlations in resonance nonlinear magneto-optical rotation
We have studied the intensity correlations between two orthogonally linearly
polarized components of a laser field propagating through a resonant atomic
medium. These experiments have been performed in a Rubidium atomic vapor. We
observe that the correlations between the orthogonally polarized components of
the laser beam are maximal in the absence of a magnetic field. The magnitude of
the correlations depends on the applied magnetic field, and the magnitude first
decreases and then increases with increasing magnetic field. Minimal
correlations and maximal rotation angles are observed at the same magnetic
fields. The width of the correlation function is directly proportional to the
excited state lifetime and inversely proportional to the Rabi frequency of
laser field. These results can be useful for improving optical magnetometers
and for optical field or atomic spin squeezing.Comment: 8 pages, 4 figure
Optomagnetic composite medium with conducting nanoelements
A new type of metal-dielectric composites has been proposed that is
characterised by a resonance-like behaviour of the effective permeability in
the infrared and visible spectral ranges. This material can be referred to as
optomagnetic medium. The analytical formalism developed is based on solving the
scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The
presence of the effective magnetic permeability and its resonant properties
lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66,
200
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
Strong Interactions of Single Atoms and Photons near a Dielectric Boundary
Modern research in optical physics has achieved quantum control of strong
interactions between a single atom and one photon within the setting of cavity
quantum electrodynamics (cQED). However, to move beyond current
proof-of-principle experiments involving one or two conventional optical
cavities to more complex scalable systems that employ N >> 1 microscopic
resonators requires the localization of individual atoms on distance scales <
100 nm from a resonator's surface. In this regime an atom can be strongly
coupled to a single intracavity photon while at the same time experiencing
significant radiative interactions with the dielectric boundaries of the
resonator. Here, we report an initial step into this new regime of cQED by way
of real-time detection and high-bandwidth feedback to select and monitor single
Cesium atoms localized ~100 nm from the surface of a micro-toroidal optical
resonator. We employ strong radiative interactions of atom and cavity field to
probe atomic motion through the evanescent field of the resonator. Direct
temporal and spectral measurements reveal both the significant role of
Casimir-Polder attraction and the manifestly quantum nature of the atom-cavity
dynamics. Our work sets the stage for trapping atoms near micro- and
nano-scopic optical resonators for applications in quantum information science,
including the creation of scalable quantum networks composed of many
atom-cavity systems that coherently interact via coherent exchanges of single
photons.Comment: 8 pages, 5 figures, Supplemental Information included as ancillary
fil
- …
