3,409 research outputs found
Allocation in Practice
How do we allocate scarcere sources? How do we fairly allocate costs? These
are two pressing challenges facing society today. I discuss two recent projects
at NICTA concerning resource and cost allocation. In the first, we have been
working with FoodBank Local, a social startup working in collaboration with
food bank charities around the world to optimise the logistics of collecting
and distributing donated food. Before we can distribute this food, we must
decide how to allocate it to different charities and food kitchens. This gives
rise to a fair division problem with several new dimensions, rarely considered
in the literature. In the second, we have been looking at cost allocation
within the distribution network of a large multinational company. This also has
several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on
Artificial Intelligence (KI 2014), Springer LNC
Number Partitioning on a Quantum Computer
We present an algorithm to compute the number of solutions of the
(constrained) number partitioning problem. A concrete implementation of the
algorithm on an Ising-type quantum computer is given.Comment: 5 pages, 1 figure, see also
http://rugth30.phys.rug.nl/compphys/qce.ht
On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry
We consider a common type of symmetry where we have a matrix of decision
variables with interchangeable rows and columns. A simple and efficient method
to deal with such row and column symmetry is to post symmetry breaking
constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and
negative results on posting such symmetry breaking constraints. On the positive
side, we prove that we can compute in polynomial time a unique representative
of an equivalence class in a matrix model with row and column symmetry if the
number of rows (or of columns) is bounded and in a number of other special
cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are
often effective in practice, they can leave a large number of symmetric
solutions in the worst case. In addition, we prove that propagating DOUBLELEX
completely is NP-hard. Finally we consider how to break row, column and value
symmetry, correcting a result in the literature about the safeness of combining
different symmetry breaking constraints. We end with the first experimental
study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark
problems.Comment: To appear in the Proceedings of the 16th International Conference on
Principles and Practice of Constraint Programming (CP 2010
Random Costs in Combinatorial Optimization
The random cost problem is the problem of finding the minimum in an
exponentially long list of random numbers. By definition, this problem cannot
be solved faster than by exhaustive search. It is shown that a classical
NP-hard optimization problem, number partitioning, is essentially equivalent to
the random cost problem. This explains the bad performance of heuristic
approaches to the number partitioning problem and allows us to calculate the
probability distributions of the optimum and sub-optimum costs.Comment: 4 pages, Revtex, 2 figures (eps), submitted to PR
Fingerprint oxygen redox reactions in batteries through high-efficiency mapping of resonant inelastic X-ray scattering
Realizing reversible reduction-oxidation (redox) reactions of lattice oxygen in batteries is a promising way to improve the energy and power density. However, conventional oxygen absorption spectroscopy fails to distinguish the critical oxygen chemistry in oxide-based battery electrodes. Therefore, high-efficiency full-range mapping of resonant inelastic X-ray scattering (mRIXS) has been developed as a reliable probe of oxygen redox reactions. Here, based on mRIXS results collected from a series of Li Ni Co Mn O electrodes at different electrochemical states and its comparison with peroxides, we provide a comprehensive analysis of five components observed in the mRIXS results. While all the five components evolve upon electrochemical cycling, only two of them correspond to the critical states associated with oxygen redox reactions. One is a specific feature at 531.0 eV excitation and 523.7 eV emission energy, the other is a low-energy loss feature. We show that both features evolve with electrochemical cycling of Li Ni Co Mn O electrodes, and could be used for characterizing oxidized oxygen states in the lattice of battery electrodes. This work provides an important benchmark for a complete assignment of all mRIXS features collected from battery materials, which sets a general foundation for future studies in characterization, analysis, and theoretical calculation for probing and understanding oxygen redox reactions. 1.17 0.21 0.08 0.54 2 1.17 0.21 0.08 0.54
Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random Satisfiability problem, and its application to stop-and-restart resolutions
A large deviation analysis of the solving complexity of random
3-Satisfiability instances slightly below threshold is presented. While finding
a solution for such instances demands an exponential effort with high
probability, we show that an exponentially small fraction of resolutions
require a computation scaling linearly in the size of the instance only. This
exponentially small probability of easy resolutions is analytically calculated,
and the corresponding exponent shown to be smaller (in absolute value) than the
growth exponent of the typical resolution time. Our study therefore gives some
theoretical basis to heuristic stop-and-restart solving procedures, and
suggests a natural cut-off (the size of the instance) for the restart.Comment: Revtex file, 4 figure
Number partitioning as random energy model
Number partitioning is a classical problem from combinatorial optimisation.
In physical terms it corresponds to a long range anti-ferromagnetic Ising spin
glass. It has been rigorously proven that the low lying energies of number
partitioning behave like uncorrelated random variables. We claim that
neighbouring energy levels are uncorrelated almost everywhere on the energy
axis, and that energetically adjacent configurations are uncorrelated, too.
Apparently there is no relation between geometry (configuration) and energy
that could be exploited by an optimization algorithm. This ``local random
energy'' picture of number partitioning is corroborated by numerical
simulations and heuristic arguments.Comment: 8+2 pages, 9 figures, PDF onl
Optimization by Quantum Annealing: Lessons from hard 3-SAT cases
The Path Integral Monte Carlo simulated Quantum Annealing algorithm is
applied to the optimization of a large hard instance of the Random 3-SAT
Problem (N=10000). The dynamical behavior of the quantum and the classical
annealing are compared, showing important qualitative differences in the way of
exploring the complex energy landscape of the combinatorial optimization
problem. At variance with the results obtained for the Ising spin glass and for
the Traveling Salesman Problem, in the present case the linear-schedule Quantum
Annealing performance is definitely worse than Classical Annealing.
Nevertheless, a quantum cooling protocol based on field-cycling and able to
outperform standard classical simulated annealing over short time scales is
introduced.Comment: 10 pages, 6 figures, submitted to PR
Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data
Constraint Programming (CP) has proved an effective paradigm to model and
solve difficult combinatorial satisfaction and optimisation problems from
disparate domains. Many such problems arising from the commercial world are
permeated by data uncertainty. Existing CP approaches that accommodate
uncertainty are less suited to uncertainty arising due to incomplete and
erroneous data, because they do not build reliable models and solutions
guaranteed to address the user's genuine problem as she perceives it. Other
fields such as reliable computation offer combinations of models and associated
methods to handle these types of uncertain data, but lack an expressive
framework characterising the resolution methodology independently of the model.
We present a unifying framework that extends the CP formalism in both model
and solutions, to tackle ill-defined combinatorial problems with incomplete or
erroneous data. The certainty closure framework brings together modelling and
solving methodologies from different fields into the CP paradigm to provide
reliable and efficient approches for uncertain constraint problems. We
demonstrate the applicability of the framework on a case study in network
diagnosis. We define resolution forms that give generic templates, and their
associated operational semantics, to derive practical solution methods for
reliable solutions.Comment: Revised versio
Phase transition and landscape statistics of the number partitioning problem
The phase transition in the number partitioning problem (NPP), i.e., the
transition from a region in the space of control parameters in which almost all
instances have many solutions to a region in which almost all instances have no
solution, is investigated by examining the energy landscape of this classic
optimization problem. This is achieved by coding the information about the
minimum energy paths connecting pairs of minima into a tree structure, termed a
barrier tree, the leaves and internal nodes of which represent, respectively,
the minima and the lowest energy saddles connecting those minima. Here we apply
several measures of shape (balance and symmetry) as well as of branch lengths
(barrier heights) to the barrier trees that result from the landscape of the
NPP, aiming at identifying traces of the easy/hard transition. We find that it
is not possible to tell the easy regime from the hard one by visual inspection
of the trees or by measuring the barrier heights. Only the {\it difficulty}
measure, given by the maximum value of the ratio between the barrier height and
the energy surplus of local minima, succeeded in detecting traces of the phase
transition in the tree. In adddition, we show that the barrier trees associated
with the NPP are very similar to random trees, contrasting dramatically with
trees associated with the spin-glass and random energy models. We also
examine critically a recent conjecture on the equivalence between the NPP and a
truncated random energy model
- …
