8,789 research outputs found
Nambu-Jona-Lasinio Model in Curved Spacetime with Magnetic Field
We discuss the phase structure of the NJL model in curved spacetime with
magnetic field using -expansion and linear curvature approximation. The
effective potential for composite fields is calculated using
the proper-time cut-off in the following cases: a) at non-zero curvature, b) at
non-zero curvature and non-zero magnetic field, and c) at non-zero curvature
and non-zero covariantly constant gauge field. Chiral symmetry breaking is
studied numerically. We show that the gravitational field may compensate the
effect of the magnetic field what leads to restoration of chiral symmetry.Comment: LaTex file, 11 pages, 5 figures (not included) avaliable by request
from first or third autho
Ridge Fusion in Statistical Learning
We propose a penalized likelihood method to jointly estimate multiple
precision matrices for use in quadratic discriminant analysis and model based
clustering. A ridge penalty and a ridge fusion penalty are used to introduce
shrinkage and promote similarity between precision matrix estimates. Block-wise
coordinate descent is used for optimization, and validation likelihood is used
for tuning parameter selection. Our method is applied in quadratic discriminant
analysis and semi-supervised model based clustering.Comment: 24 pages and 9 tables, 3 figure
Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy
We report on a small-angle x-ray-scattering (SAXS) and differential scanning calorimetry study of phase separation and crystallization in rapidly quenched amorphous Mg62Cu25Y10Li3 alloy samples. Differential scanning calorimetry demonstrates the occurrence of crystallization and grain growth upon isothermal annealing of these samples at 135 °C. The SAXS studies show the presence of large inhomogeneities even in the rapidly quenched as-prepared Mg62Cu25Y10Li3 alloy that is attributed to phase separation in the undercooled liquid during the cooling process. After isothermal annealing at 135 °C for longer than 30 min the samples exhibit a strong SAXS intensity that monotonically increases with increasing annealing time. During heat treatment, crystallization and growth of a nanocrystalline bcc-Mg7Li3 phase occurs in the Y-poor and MgLi-rich domains. The initially rough boundaries of the nanocrystals become sharper with increasing annealing time. Anomalous small-angle x-ray-scattering investigations near the Cu K edge indicate that while Cu is distributed homogeneously in the as-prepared sample, a Cu composition gradient develops between the matrix and the bcc-Mg7Li3 nanocrystals in the annealed sample
Proteomics of Cytochrome c Oxidase-Negative versus -Positive Muscle Fiber Sections in Mitochondrial Myopathy
The mosaic distribution of cytochrome c oxidase(+) (COX+) and COX - muscle fibers in mitochondrial disorders allows the sampling of fibers with compensated and decompensated mitochondrial function from the same individual. We apply laser capture microdissection to excise individual COX+ and COX- fibers from the biopsies of mitochondrial myopathy patients. Using mass spectrometry-based proteomics, we quantify >4,000 proteins per patient. While COX+ fibers show a higher expression of respiratory chain components, COX- fibers display protean adaptive responses, including upregulation of mitochondrial ribosomes, translation proteins, and chaperones. Upregulated proteins include C1QBP, required for mitoribosome formation and protein synthesis, and STOML2, which organizes cardiolipin-enriched microdomains and the assembly of respiratory supercomplexes. Factoring in fast/slow fiber type, COX (-) slow fibers show a compensatory upregulation of beta-oxidation, the AAA(+) protease AFG3L1, and the OPA1-dependent cristae remodeling program. These findings reveal compensatory mechanisms in muscle fibers struggling with energy shortage and metabolic stress
Quantum properties of general gauge theories with composite and external fields
The generating functionals of Green's functions with composite and external
fields are considered in the framework of BV and BLT quantization methods for
general gauge theories. The corresponding Ward identities are derived and the
gauge dependence is investigatedComment: 24 pages, LATEX, slightly changed to clarify the essential new aspect
concerning composite fields depending on external ones; added formulas
showing lack of (generalized) nilpotence of operators appearing in the Ward
identitie
- …
