47 research outputs found
A multi-scale environmental niche model for the Endangered dhole Cuon alpinus
The dhole Cuon alpinus is a large canid that is categorized as Endangered on the IUCN Red List and at risk of global extinction. Information on the spatial distribution of suitable habitat is important for conservation planning but is largely unavailable. We quantified the spatial distribution of potential range as well as the relative probability of dhole occurrence across large parts of the species’ global range. We used the MaxEnt algorithm to produce a multi-scale environmental niche model based on 24 environmental variables and dhole occurrence data from 12 countries. We identified three regions where dhole conservation should be focused: western India, central India, and across the Himalayan foothills through Southeast Asia. Connectivity between suitable areas was poor, so coordinated action among these regions should be a priority. For instance, transboundary dhole conservation initiatives across the Himalayas from southern China, Myanmar, north-east India, Nepal and Bhutan need to be initiated. We also highlight the value of improving dhole population viability on unprotected land and increasing monitoring in the northern parts of its historic distribution, in particular in areas within mainland China
The gut microbial diversity of newly diagnosed diabetics but not of prediabetics is significantly different from that of healthy nondiabetics
Type 2 diabetes (T2D) is a complex metabolic syndrome characterized by insulin dysfunction and abnormalities in glucose and lipid metabolism. The gut microbiome has been recently identified as an important factor for development of T2D. In this study, a total of 102 subjects were recruited, and we have looked at the gut microbiota of prediabetics (PreDMs) (n = 17), newly diagnosed diabetics (NewDMs) (n = 11), and diabetics on antidiabetic treatment (KnownDMs) (n = 39) and compared them with healthy nondiabetics (ND) (n = 35). Twenty-five different serum biomarkers were measured to assess the status of diabetes and their association with gut microbiota. Our analysis revealed nine different genera as differentially abundant in four study groups. Among them, Akkermansia, Blautia, and Ruminococcus were found to be significantly (P < 0.05) decreased, while Lactobacillus was increased in NewDMs compared to ND and recovered in KnownDMs. Akkermansia was inversely correlated with HbA1c and positively correlated with total antioxidants. Compared to ND, there was increased abundance of Megasphaera, Escherichia, and Acidaminococcus and decreased abundance of Sutterella in KnownDMs. Among many taxa known to act as community drivers during disease progression, we observed genus Sutterella as a common driver taxon among all diabetic groups. On the basis of the results of random forest analysis, we found that the genera Akkermansia and Sutterella and that the serum metabolites fasting glucose, HbA1c, methionine, and total antioxidants were highly discriminative factors among studied groups. Taken together, our data revealed that gut microbial diversity of NewDMs but not of PreDMs is significantly different from that of ND. Interestingly, after antidiabetic treatment, the microbial diversity of KnownDMs tends to recover toward that of ND. IMPORTANCE Gut microbiota is considered to play a role in disease progression, and previous studies have reported an association of microbiome dysbiosis with T2D. In this study, we have attempted to investigate gut microbiota of ND, PreDMs, NewDMs, and KnownDMs. We found that the genera Akkermansia and Blautia decreased significantly (P < 0.05) in treatment-naive diabetics and were restored in KnownDMs on antidiabetic treatment. To the best of our knowledge, comparative studies on shifts in the microbial community in individuals of different diabetic states are lacking. Understanding the transition of microbiota and its association with serum biomarkers in diabetics with different disease states may pave the way for new therapeutic approaches for T2D.</p
Environmental sensing and response genes in cnidaria : the chemical defensome in the sea anemone Nematostella vectensis
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Cell Biology and Toxicology 24 (2008): 483-502, doi:10.1007/s10565-008-9107-5.The starlet sea anemone Nematostella vectensis has been recently established as a
new model system for the study of the evolution of developmental processes, as cnidaria
occupy a key evolutionary position at the base of the bilateria. Cnidaria play important
roles in estuarine and reef communities, but are exposed to many environmental stressors.
Here I describe the genetic components of a ‘chemical defensome’ in the genome of
N. vectensis, and review cnidarian molecular toxicology. Gene families that defend
against chemical stressors and the transcription factors that regulate these genes have
been termed a ‘chemical defensome,’ and include the cytochromes P450 and other
oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters,
oxidative detoxification proteins, as well as various transcription factors. These genes
account for about 1% (266/27200) of the predicted genes in the sea anemone genome,
similar to the proportion observed in tunicates and humans, but lower than that observed
in sea urchins. While there are comparable numbers of stress-response genes, the stress
sensor genes appear to be reduced in N. vectensis relative to many model protostomes
and deuterostomes. Cnidarian toxicology is understudied, especially given the important
ecological roles of many cnidarian species. New genomic resources should stimulate the
study of chemical stress sensing and response mechanisms in cnidaria, and allow us to
further illuminate the evolution of chemical defense gene networks.WHOI Ocean Life Institute and NIH R01-ES01591
AECHL-1, a novel triterpenoid, targets tumor neo-vasculature and impairs the endothelial cell cytoskeleton
The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q
One of the vital roles of ascorbic acid (vitamin C) is to act as an antioxidant to protect cellular components from free radical damage. Ascorbic acid has been shown to scavenge free radicals directly in the aqueous phases of cells and the circulatory system. Ascorbic acid has also been proven to protect membrane and other hydrophobic compartments from such damage by regenerating the antioxidant form of vitamin E. In addition, reduced coenzyme Q, also a resident of hydrophobic compartments, interacts with vitamin E to regenerate its antioxidant form. The mechanism of vitamin C antioxidant function, the myriad of pathologies resulting from its clinical deficiency, and the many health benefits it provides, are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44796/1/10863_2004_Article_BF00762775.pd
Xeroderma pigmentosum A homolog from Hydra partially complements DNA repair defect in human XPA-deficient cells
DNA Repair Repertoire of the Enigmatic Hydra
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.</jats:p
Cloning and characterization of Thioredoxin 1 from the Cnidarian <i>Hydra</i>
Abstract
Thioredoxins, small disulphide-containing redox proteins, play an important role in the regulation of cellular thiol redox balance through their disulfide reductase activity. In this study, we have identified, cloned, purified and characterized thioredoxin 1 (HvTrx1) from the Cnidarian Hydra vulgaris Ind-Pune. Bioinformatics analysis revealed that HvTrx1 contains an evolutionarily conserved catalytic active site Cys-Gly-Pro-Cys and shows a closer phylogenetic relationship with vertebrate Trx1. Optimum pH and temperature for enzyme activity of purified HvTrx1 was found to be pH 7.0 and 25°C, respectively. Enzyme activity decreased significantly at acidic or alkaline pH as well as at higher temperatures. HvTrx1 was found to be expressed ubiquitously in whole mount in situ hybridization.
Treatment of Hydra with hydrogen peroxide (H2O2), a highly reactive oxidizing agent, led to a significant increase in gene expression and enzyme activity of Trx1. Further experiments using PX12, an inhibitor of Trx1, indicated that Trx1 plays an important role in regeneration in Hydra. Finally, by using growth assay in Escherichia coli and wound healing assay in human colon cancer cells, we demonstrate that HvTrx1 is functionally active in both prokaryotic and eukaryotic heterologous systems.</jats:p
