311 research outputs found
Correspondence Between Classical and Quantum Theory by -Deformed Coherent State
Generalized -coherent state approach in deformation quantization framework
is investigated by using a -eigenvalue equation. For this purpose we
introduce a new Moyal star product called -star product, so that by using
this -eigenvalue equation one can obtain exactly the spectrum of a
general Hamiltonian of a deformed system.Comment: Presented in QTRF-6, June 11-14, 2012-Swede
Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks
In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods
Letter by nezami et al regarding article, "platelet reactivity and cardiovascular outcomes after percutaneous coronary intervention: A time-dependent analysis of the gauging responsiveness with a verify now P2Y12 Assay: Impact on Thrombosis and Safety (GRAVITAS) Trial"
Topological superconductivity of spin-3/2 carriers in a three-dimensional doped Luttinger semimetal
We investigate topological Cooper pairing, including gapless Weyl and fully
gapped class DIII superconductivity, in a three-dimensional doped Luttinger
semimetal. The latter describes effective spin-3/2 carriers near a quadratic
band touching and captures the normal-state properties of the 227 pyrochlore
iridates and half-Heusler alloys. Electron-electron interactions may favor
non--wave pairing in such systems, including even-parity -wave pairing.
We argue that the lowest energy -wave pairings are always of complex (e.g.,
) type, with nodal Weyl quasiparticles. This implies scaling of the density of states (DoS) at low energies in the clean
limit, or over a wide critical region in the presence of
disorder. The latter is consistent with the -dependence of the penetration
depth in the half-Heusler compound YPtBi. We enumerate routes for experimental
verification, including specific heat, thermal conductivity, NMR relaxation
time, and topological Fermi arcs. Nucleation of any -wave pairing also
causes a small lattice distortion and induces an -wave component; this gives
a route to strain-engineer exotic pairings. We also consider odd-parity,
fully gapped -wave superconductivity. For hole doping, a gapless Majorana
fluid with cubic dispersion appears at the surface. We invent a generalized
surface model with -fold dispersion to simulate a bulk with winding number
. Using exact diagonalization, we show that disorder drives the surface
into a critically delocalized phase, with universal DoS and multifractal
scaling consistent with the conformal field theory (CFT) SO(), where
counts replicas. This is contrary to the naive expectation of
a surface thermal metal, and implies that the topology tunes the surface
renormalization group to the CFT in the presence of disorder.Comment: Published Version in PRB (Editors' Suggestion): 49 Pages, 17 Figures,
3 Table
New Reconstructed Database for Cost Reduction in Indoor Fingerprinting Localization
Location fingerprinting is a technique widely suggested for challenging indoor positioning. Despite the significant benefits of this technique, it needs a considerable amount of time and energy to measure the Received Signal Strength (RSS) at Reference Points (RPs) and build a fingerprinting database to achieve an appropriate localization accuracy. Reducing the number of RPs can reduce this cost, but it noticeably degrades the accuracy of positioning. In order to alleviate this problem, this paper takes the interior architecture of the indoor area and signal propagation effects into account and proposes two novel recovery methods for creating the reconstructed database instead of the measured one. They only need a few numbers of RPs to reconstruct the database and even are able to produce a denser database. The first method is a new zone-based path-loss propagation model which employs fingerprints of different zones separately and the second one is a new interpolation method, zone-based Weighted Ring-based (WRB). The proposed methods are compared with the conventional path-loss model and six interpolation functions. Two different test environments along with a benchmarking testbed, and various RPs configurations are also utilized to verify the proposed recovery methods, based on the reconstruction errors and the localization accuracies they provide. The results indicate that by taking only 11% of the initial RPs, the new zone-based path-loss model decreases the localization error up to 26% compared to the conventional path-loss model and the proposed zone-based WRB method outperforms all the other interpolation methods and improves the accuracy by 40%
- …
