15,160 research outputs found

    Solving the excitation and chemical abundances in shocks: the case of HH1

    Get PDF
    We present deep spectroscopic (3600 - 24700 A) X-shooter observations of the bright Herbig-Haro object HH1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, HI, and He, recombination lines and H_2, ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non Local Thermal Equilibiurm codes to derive the electron temperature and density, and, for the first time, we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 - 80000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density about 10^3 cm^-3), and a more compact component (density > 10^5 cm^-3) likely associated with the hottest gas. A further neutral component is also evidenced, having temperature lass than 10000 K and density > 10^4 cm^-3. The gas fractional ionization was estimated solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This testifies the presence of dust inside the medium, with a depletion factor of Iron of about 40%.Comment: Accepted by The Astrophysical Journa

    On the rapidity dependence of the average transverse momentum in hadronic collisions

    Full text link
    The energy and rapidity dependence of the average transverse momentum pT\langle p_T \rangle in pppp and pApA collisions at RHIC and LHC energies are estimated using the Colour Glass Condensate (CGC) formalism. We update previous predictions for the pTp_T - spectra using the hybrid formalism of the CGC approach and two phenomenological models for the dipole - target scattering amplitude. We demonstrate that these models are able to describe the RHIC and LHC data for the hadron production in pppp, dAudAu and pPbpPb collisions at pT20p_T \le 20 GeV. Moreover, we present our predictions for pT\langle p_T \rangle and demonstrate that the ratio pT(y)/pT(y=0)\langle p_{T}(y)\rangle / \langle p_{T}(y = 0)\rangle decreases with the rapidity and has a behaviour similar to that predicted by hydrodynamical calculations.Comment: 11 pages, 7 figures; revised version: new results for the average transverse momentum at partonic level added in fig. 4; Results and Discussion section has been improved and enlarge

    On the binarity of the classical Cepheid X Sgr from interferometric observations

    Full text link
    Optical-infrared interferometry can provide direct geometrical measurements of the radii of Cepheids and/or reveal unknown binary companions of these stars. Such information is of great importance for a proper calibration of Period-Luminosity relations and for determining binary fraction among Cepheids. We observed the Cepheid X Sgr with VLTI/AMBER in order to confirm or disprove the presence of the hypothesized binary companion and to directly measure the mean stellar radius, possibly detecting its variation along the pulsation cycle. From AMBER observations in MR mode we performed a binary model fitting on the closure phase and a limb-darkened model fitting on the visibility. Our analysis indicates the presence of a point-like companion at a separation of 10.7 mas and 5.6 magK fainter than the primary, whose flux and position are sharply constrained by the data. The radius pulsation is not detected, whereas the average limb-darkened diameter results to be 1.48+/-0.08 mas, corresponding to 53+/-3 R_sun at a distance of 333.3 pc.Comment: 5 pages, 3 figures, research not

    Towards a better classification of unclear eruptive variables: the cases of V2492 Cyg, V350 Cep, and ASASSN-15qi

    Get PDF
    Eruptive variables are young stars that show episodic variations of brightness: EXors/FUors variations are commonly associated with enhanced accretion outbursts occurring at intermittent cadence of months/years (EXors) and decades/centuries (FUors). Variations that can be ascribed to a variable extinction along their line of sight are instead classified as UXors. We aim at investigating the long-term photometric behaviour of three sources classified as eruptive variables. We present data from the archival plates of the Asiago Observatory relative to the fields where the targets are located. For the sake of completeness we have also analysed the Harvard plates of the same regions that cover a much longer historical period, albeit at a lower sensitivity, however we are only able to provide upper limits. A total of 273 Asiago plates were investigated, providing a total of more than 200 magnitudes for the three stars, which cover a period of about 34 yr between 1958 and 1991. We have compared our data with more recently collected literature data. Our plates analysis of V2492 Cyg provides historical upper limits that seem not to be compatible with the level of the activity monitored during the last decade. Therefore, recently observed accretion phenomena could be associated with the outbursting episodes, more than repetitive obscuration. While a pure extinction does not seem the only mechanism responsible for the ASASSN-15qi fluctuations, it can account quite reasonably for the recent V350 Cep variations.Comment: 12 pages, accepted by A&

    Testing the running coupling kTk_{T}-factorization formula for the inclusive gluon production

    Full text link
    The inclusive gluon production at midrapidities is described in the Color Glass Condensate formalism using the kTk_T - factorization formula, which was derived at fixed coupling constant considering the scattering of a dilute system of partons with a dense one. Recent analysis demonstrated that this approach provides a satisfactory description of the experimental data for the inclusive hadron production in pp/pA/AApp/pA/AA collisions. However, these studies are based on the fixed coupling kTk_T - factorization formula, which does not take into account the running coupling corrections, which are important to set the scales present in the cross section. In this paper we consider the running coupling corrected kTk_T - factorization formula conjectured some years ago and investigate the impact of the running coupling corrections on the observables. In particular, the pseudorapidity distributions and charged hadrons multiplicity are calculated considering pppp, dAu/pPbdAu/pPb and AuAu/PbPbAuAu/PbPb collisions at RHIC and LHC energies. We compare the corrected running coupling predictions with those obtained using the original kTk_T - factorization assuming a fixed coupling or a prescription for the inclusion of the running of the coupling. Considering the Kharzeev - Levin - Nardi unintegrated gluon distribution and a simplified model for the nuclear geometry, we demonstrate that the distinct predictions are similar for the pseudorapidity distributions in pp/pA/AApp/pA/AA collisions and for the charged hadrons multiplicity in pp/pApp/pA collisions. On the other hand, the running coupling corrected kTk_T - factorization formula predicts a smoother energy dependence for dN/dηdN/d\eta in AAAA collisions.Comment: 9 pages and 4 figure

    Interpreting the simultaneous variability of near-IR continuum and line emission in young stellar objects

    Full text link
    We present new near-infrared (IR) spectra (0.80-1.35um) of the pre-Main Sequence source PV Cep taken during a monitoring program of eruptive variables we are conducting since some years. Simultaneous photometric and spectroscopic observations are systematically carried out during outburst and quiescence periods. By correlating extinction-free parameters, such as HI recombination lines and underlying continuum, it is possible to infer on the mechanism(s) responsible for their origin. Accretion and mass loss processes have a dominant role in determining the PV Cep irregular variability of both continuum and line emission. The potentialities of the observational modality are also discussed.Comment: accepted by Astrophysics and Space Scenc

    X-Shooter spectroscopy of young stellar objects - VI - HI line decrements

    Get PDF
    Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures. Here we perform a study of the HI decrements and line profiles, from the Balmer and Paschen lines detected in the X-Shooter spectra of a homogeneous sample of 36 T Tauri stars in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the gas physical conditions to derive a consistent picture of the HI emission mechanisms in pre-main sequence low-mass stars. We have empirically classified the sources based on their HI line profiles and decrements. We identified four Balmer decrement types (classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 10^9 cm^-3 and 5000<T<15000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log n_H > 11 cm^-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually reddened type 2 decrements. About 20% of the objects present type 3 Balmer decrements (bumpy), which cannot be reproduced with current models.Comment: 29 pages, accepted by A&
    corecore