323 research outputs found
Les infections invasives à méningocoques (IIM) - protocoles pour le diagnostic bactériologique des IIM en Pays de la Loire
A closer look at arrested spinodal decomposition in protein solutions
Concentrated aqueous solutions of the protein lysozyme undergo a liquid solid
transition upon a temperature quench into the unstable spinodal region below a
characteristic arrest temperature of Tf=15C. We use video microscopy and
ultra-small angle light scattering in order to investigate the arrested
structures as a function of initial concentration, quench temperature and rate
of the temperature quench. We find that the solid-like samples show all the
features of a bicontinuous network that is formed through an arrested spinodal
decomposition process. We determine the correlation length Xi and demonstrate
that Xi exhibits a temperature dependence that closely follows the critical
scaling expected for density fluctuations during the early stages of spinodal
decomposition. These findings are in agreement with an arrest scenario based on
a state diagram where the arrest or gel line extends far into the unstable
region below the spinodal line. Arrest then occurs when during the early stage
of spinodal decomposition the volume fraction phi2 of the dense phase
intersects the dynamical arrest threshold phi2Glass, upon which phase
separation gets pinned into a space-spanning gel network with a characteristic
length Xi
A comprehensive analysis of the hard X-ray spectra of bright Seyfert galaxies
Hard X-ray spectra of 28 bright Seyfert galaxies observed with INTEGRAL were
analyzed together with the X-ray spectra from XMM-Newton, Suzaku and RXTE.
These broad-band data were fitted with a model assuming a thermal
Comptonization as a primary continuum component. We tested several model
options through a fitting of the Comptonized continuum accompanied by a complex
absorption and a Compton reflection. Both the large data set used and the model
space explored allowed us to accurately determine a mean temperature kTe of the
electron plasma, the Compton parameter y and the Compton reflection strength R
for the majority of objects in the sample. Our main finding is that a vast
majority of the sample (20 objects) is characterized by kTe < 100 keV, and only
for two objects we found kTe > 200 keV. The median kTe for entire sample is
48(-14,+57) keV. The distribution of the y parameter is bimodal, with a broad
component centered at ~0.8 and a narrow peak at ~1.1. A complex, dual absorber
model improved the fit for all data sets, compared to a simple absorption
model, reducing the fitted strength of Compton reflection by a factor of about
2. Modest reflection (median R ~0.32) together with a high ratio of Comptonized
to seed photon fluxes point towards a geometry with a compact hard X-ray
emitting region well separated from the accretion disc. Our results imply that
the template Seyferts spectra used in AGN population synthesis models should be
revised.Comment: 26 pages, 12 figures, accepted for publication in MNRA
Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility
We have developed a lab work module where we teach undergraduate students how
to quantify the dynamics of a suspension of microscopic particles, measuring
and analyzing the motion of those particles at the individual level or as a
group. Differential Dynamic Microscopy (DDM) is a relatively recent technique
that precisely does that and constitutes an alternative method to more
classical techniques such as dynamics light scattering (DLS) or video particle
tracking (VPT). DDM consists in imaging a particle dispersion with a standard
light microscope and a camera. The image analysis requires the students to code
and relies on digital Fourier transform to obtain the intermediate scattering
function, an autocorrelation function that characterizes the dynamics of the
dispersion. We first illustrate DDM on the textbook case of colloids where we
measure the diffusion coefficient. Then we show that DDM is a pertinent tool to
characterize biologic systems such as motile bacteria i.e.bacteria that can
self propel, where we not only determine the diffusion coefficient but also the
velocity and the fraction of motile bacteria. Finally, so that our paper can be
used as a tutorial to the DDM technique, we have joined to this article movies
of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab
and Python to analyze the movies
Synthesis of hollow vaterite CaCO(3) microspheres in supercritical carbon dioxide medium
We here describe a rapid method for synthesizing hollow core, porous crystalline calcium carbonate microspheres composed of vaterite using supercritical carbon dioxide in aqueous media, without surfactants. We show that the reaction in alkaline media rapidly conducts to the formation of microspheres with an average diameter of 5 mu m. SEM, TEM and AFM observations reveal that the microspheres have a hollow core of around 0.7 mu m width and are composed of nanograins with an average diameter of 40 nm. These nanograins are responsible for the high specific surface area of 16 m(2) g(-1) deduced from nitrogen absorption/desorption isotherms, which moreover confers an important porosity to the microspheres. We believe this work may pave the way for the elaboration of a biomaterial with a large potential for therapeutic as well as diagnostic applications
Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis
Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites <i>Trypanosoma brucei</i> (<i>T.b.</i>) <i>gambiense</i> or <i>T.b.rhodesiense</i> and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage <i>T.b.rhodesiense</i> infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-͎-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties <i>in vitro</i> and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy
ALBACORE OBS recovery cruise report
The primary goal of the 2011 ALBACORE (Asthenosphere and
Lithosphere Broadband Architecture from the California
Offshore Region Experiment) cruise was to recover 34 ocean bottom seismometers (OBSs) in a 150 km (north-south) by 400 km (east-west) region off the coast of Southern California (Fig. 1). The cruise took place on R/V New Horizon, departing out of San Diego on Sept 7, 2011 and arriving back in San Diego on Sept 16, 2011 with no port stops in between
X-ray standing wave and reflectometric characterization of multilayer structures
Microstructural characterization of synthetic periodic multilayers by x-ray
standing waves have been presented. It has been shown that the analysis of
multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW)
techniques can overcome the deficiencies of the individual techniques in
microstructural analysis. While interface roughnesses are more accurately
determined by the XRR technique, layer composition is more accurately
determined by the XSW technique where an element is directly identified by its
characteristic emission. These aspects have been explained with an example of a
20 period Pt/C multilayer. The composition of the C-layers due to Pt
dissolution in the C-layers, PtC, has been determined by the XSW
technique. In the XSW analysis when the whole amount of Pt present in the
C-layers is assumed to be within the broadened interface, it l eads to larger
interface roughness values, inconsistent with those determined by the XRR
technique. Constraining the interface roughness values to those determined by
the XRR technique, requires an additional amount of dissolved Pt in the
C-layers to expl ain the Pt fluorescence yield excited by the standing wave
field. This analysis provides the average composition PtC of the
C-layers .Comment: 12 pages RevTex, 10 eps figures embedde
Correlates of self-reported coercive parenting of preschool-aged children at high risk for the development of conduct problems.
Objective: This study examines the correlates of coercive parenting in a high-risk sample of 305 three-year-old children likely to develop later conduct problems. As parental coercion has been identified as a significant risk factor for future psychopathology, the study sought to identify modifiable inter and intra-personal factors most closely associated with coercion. Method: Key variables known to place young children at future risk, such as maternal mood states, current child behaviour problems, demographic characteristics such as low income, past mental health problems and parents’ sense of competence, were analyzed based on parent-report measures and clinical interviews. Correlational and heirachical regression analysis identified key predictors of coercion. Results: Three variables emerged as the strongest predictors of maternal coercion: selfefficacy, child behaviour and maternal depression. Demographic factors contributed little to the model. Conclusions: Enhancing parental self-efficacy, especially specific parenting tasks with disruptive young children has the potential to make a significant contribution toward prevention of future conduct problems
- …
