271 research outputs found
FRESH 3D Bioprinting of Alginate - Cellulose - Gelatin Constructs for Soft Tissue Biofabrication
EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay.
We studied three patients with severe skeletal dysplasia, T cell immunodeficiency, and developmental delay. Whole-exome sequencing revealed homozygous missense mutations affecting exostosin-like 3 (EXTL3), a glycosyltransferase involved in heparan sulfate (HS) biosynthesis. Patient-derived fibroblasts showed abnormal HS composition and altered fibroblast growth factor 2 signaling, which was rescued by overexpression of wild-type EXTL3 cDNA. Interleukin-2-mediated STAT5 phosphorylation in patients' lymphocytes was markedly reduced. Interbreeding of the extl3-mutant zebrafish (box) with Tg(rag2:green fluorescent protein) transgenic zebrafish revealed defective thymopoiesis, which was rescued by injection of wild-type human EXTL3 RNA. Targeted differentiation of patient-derived induced pluripotent stem cells showed a reduced expansion of lymphohematopoietic progenitor cells and defects of thymic epithelial progenitor cell differentiation. These data identify EXTL3 mutations as a novel cause of severe immune deficiency with skeletal dysplasia and developmental delay and underline a crucial role of HS in thymopoiesis and skeletal and brain development
Generation of three iPSC lines from fibroblasts of a patient with Aicardi Goutières Syndrome mutated in TREX1
Fibroblasts from a patient with Aicardi Gouti\ue8res Syndrome (AGS) carrying a compound heterozygous mutation in TREX1, were reprogrammed into induced pluripotent stem cells (iPSCs) to establish isogenic clonal stem cell lines: UNIBSi006-A, UNIBSi006-B, and UNIBSi006-C. Cells were transduced using the episomal Sendai viral vectors, containing human OCT4, SOX2, c-MYC and KLF4 transcription factors. The transgene-free iPSC lines showed normal karyotype, expressed pluripotent markers and displayed in vitro differentiation potential toward cells of the three embryonic germ layers
A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy
The sun-sensitive, cancer-prone genetic disorder xeroderma pigmentosum (XP) is associated in most cases with a defect in the ability to carry out excision repair of UV damage. Seven genetically distinct complementation groups (i.e., A-G) have been identified. A large proportion of patients with the unrelated disorder trichothiodystrophy (TTD), which is characterized by hair-shaft abnormalities, as well as by physical and mental retardation, are also deficient in excision repair of UV damage. In most of these cases the repair deficiency is in the same complementation group as is XP group D. We report here on cells from a patient, TTD1BR, in which the repair defect complements all known XP groups (including XP-D). Furthermore, microinjection of various cloned human repair genes fails to correct the repair defect in this cell strain. The defect in TTD1BR cells is therefore in a new gene involved in excision repair in human cells. The finding of a second DNA repair gene that is associated with the clinical features of TTD argues strongly for an involvement of repair proteins in hair-shaft development.</p
A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy
The sun-sensitive, cancer-prone genetic disorder xeroderma pigmentosum (XP) is associated in most cases with a defect in the ability to carry out excision repair of UV damage. Seven genetically distinct complementation groups (i.e., A-G) have been identified. A large proportion of patients with the unrelated disorder trichothiodystrophy (TTD), which is characterized by hair-shaft abnormalities, as well as by physical and mental retardation, are also deficient in excision repair of UV damage. In most of these cases the repair deficiency is in the same complementation group as is XP group D. We report here on cells from a patient, TTD1BR, in which the repair defect complements all known XP groups (including XP-D). Furthermore, microinjection of various cloned human repair genes fails to correct the repair defect in this cell strain. The defect in TTD1BR cells is therefore in a new gene involved in excision repair in human cells. The finding of a second DNA repair gene that is associated with the clinical features of TTD argues strongly for an involvement of repair proteins in hair-shaft development.</p
A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy
The sun-sensitive, cancer-prone genetic disorder xeroderma pigmentosum (XP) is associated in most cases with a defect in the ability to carry out excision repair of UV damage. Seven genetically distinct complementation groups (i.e., A-G) have been identified. A large proportion of patients with the unrelated disorder trichothiodystrophy (TTD), which is characterized by hair-shaft abnormalities, as well as by physical and mental retardation, are also deficient in excision repair of UV damage. In most of these cases the repair deficiency is in the same complementation group as is XP group D. We report here on cells from a patient, TTD1BR, in which the repair defect complements all known XP groups (including XP-D). Furthermore, microinjection of various cloned human repair genes fails to correct the repair defect in this cell strain. The defect in TTD1BR cells is therefore in a new gene involved in excision repair in human cells. The finding of a second DNA repair gene that is associated with the clinical features of TTD argues strongly for an involvement of repair proteins in hair-shaft development.</p
Organization of the human CD40L gene: implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis.
A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP
A female offspring of consanguineous parents, showed features of Wiskott-Aldrich syndrome (WAS), including recurrent infections, eczema, thrombocytopenia, defective T cell proliferation and chemotaxis, and impaired natural killer cell function. Cells from this patient had undetectable WAS protein (WASP), but normal WAS sequence and messenger RNA levels. WASP interacting protein (WIP), which stabilizes WASP, was also undetectable. A homozygous c.1301C>G stop codon mutation was found in the WIPF1 gene, which encodes WIP. Introduction of WIP into the patient’s T cells restored WASP expression. These findings indicate that WIP deficiency should be suspected in patients with features of WAS in whom WAS sequence and mRNA levels are normal
Clinical, immunological, and molecular features of typical and atypical severe combined immunodeficiency: Report of the italian primary immunodeficiency network
Severe combined immunodeficiencies (SCIDs) are a group of inborn errors of the immune system, usually associated with severe or life-threatening infections. Due to the variability of clinical phenotypes, the diagnostic complexity and the heterogeneity of the genetic basis, they are often difficult to recognize, leading to a significant diagnostic delay (DD). Aim of this study is to define presenting signs and natural history of SCID in a large cohort of patients, prior to hematopoietic stem cell or gene therapies. To this purpose, we conducted a 30-year retro-prospective multicenter study within the Italian Primary Immunodeficiency Network. One hundred eleven patients, diagnosed as typical or atypical SCID according to the European Society for Immune Deficiencies criteria, were included. Patients were subsequently classified based on the genetic alteration, pathogenic mechanism and immunological classification. A positive relationship between the age at onset and the DD was found. SCID patients with later onset were identified only in the last decade of observation. Syndromic SCIDs represented 28% of the cohort. Eight percent of the subjects were diagnosed in Intensive Care Units. Fifty-three percent had an atypical phenotype and most of them exhibited a discordant genotype-immunophenotype. Pre-treatment mortality was higher in atypical and syndromic patients. Our study broadens the knowledge of clinical and laboratory manifestations and genotype/phenotype correlation in patients with SCID and may facilitate the diagnosis of both typical and atypical forms of the disease in countries where newborn screening programs have not yet been implemented
- …
