5,755 research outputs found
Finite-Size Effects in the Field Theory Above the Upper Critical Dimension
We demonstrate that the standard O(n) symmetric field theory does
not correctly describe the leading finite-size effects near the critical point
of spin systems on a -dimensional lattice with . We show that these
finite-size effects require a description in terms of a lattice Hamiltonian.
For and explicit results are given for the susceptibility
and for the Binder cumulant. They imply that recent analyses of Monte-Carlo
results for the five-dimensional Ising model are not conclusive.Comment: 4 pages, latex, 1 figur
High Energy Photon-Photon Collisions at a Linear Collider
High intensity back-scattered laser beams will allow the efficient conversion
of a substantial fraction of the incident lepton energy into high energy
photons, thus significantly extending the physics capabilities of an
electron-electron or electron-positron linear collider. The annihilation of two
photons produces C=+ final states in virtually all angular momentum states. The
annihilation of polarized photons into the Higgs boson determines its
fundamental two-photon coupling as well as determining its parity. Other novel
two-photon processes include the two-photon production of charged lepton pairs,
vector boson pairs, as well as supersymmetric squark and slepton pairs and
Higgstrahlung. The one-loop box diagram leads to the production of pairs of
neutral particles. High energy photon-photon collisions can also provide a
remarkably background-free laboratory for studying possibly anomalous
collisions and annihilation. In the case of QCD, each photon can materialize as
a quark anti-quark pair which interact via multiple gluon exchange. The
diffractive channels in photon-photon collisions allow a novel look at the QCD
pomeron and odderon. Odderon exchange can be identified by looking at the heavy
quark asymmetry. In the case of electron-photon collisions, one can measure the
photon structure functions and its various components. Exclusive hadron
production processes in photon-photon collisions test QCD at the amplitude
level and measure the hadron distribution amplitudes which control exclusive
semi-leptonic and two-body hadronic B-decays.Comment: Invited talk, presented at the 5th International Workshop On
Electron-Electron Interactions At TeV Energies, Santa Cruz, California, 12-14
December 200
Beam energy measurement at linear colliders using spin precession
Linear collider designs foresee some bends of about 5-10 mrad. The spin
precession angle of one TeV electrons on 10 mrad bend is 23.2 rad and it
changes proportional to the energy. Measurement of the spin direction using
Compton scattering of laser light on electrons before and after the bend allows
determining the beam energy with an accuracy about of 10^{-5}. In this paper
the principle of the method, the procedure of the measurement and possible
errors are discussed. Some remarks about importance of plasma focusing effects
in the method of beam energy measurement using Moller scattering are given.Comment: 7 pages, Latex, 4 figures(.eps). In v.3 corresponds to journal
publication. Talk at 26-th Advanced ICFA Beam Dynamic Workshop on
Nanometre-Size Colliding Beams (Nanobeam2002), Lausanne, Switzerland, Sept
2-6, 200
On the origin of cosmic rays
Uniform and metagalactic cosmic ray models - halo, disk, and nonstationary galactic model
Detecting photon-photon scattering in vacuum at exawatt lasers
In a recent paper, we have shown that the QED nonlinear corrections imply a
phase correction to the linear evolution of crossing electromagnetic waves in
vacuum. Here, we provide a more complete analysis, including a full numerical
solution of the QED nonlinear wave equations for short-distance propagation in
a symmetric configuration. The excellent agreement of such a solution with the
result that we obtain using our perturbatively-motivated Variational Approach
is then used to justify an analytical approximation that can be applied in a
more general case. This allows us to find the most promising configuration for
the search of photon-photon scattering in optics experiments. In particular, we
show that our previous requirement of phase coherence between the two crossing
beams can be released. We then propose a very simple experiment that can be
performed at future exawatt laser facilities, such as ELI, by bombarding a low
power laser beam with the exawatt bump.Comment: 8 pages, 6 figure
Two-dimensional nonstationary model of the propagation of an electron beam in a vacuum
A two dimensional nonstationary model of the propagation of a relativistic electron beam injected into a vacuum is considered. Collision effects are ignored and there are no external fields. Two types of the electron current propagation are shown from the computer simulation of the Maxwell-Vlasov equations
Adiabatic Faraday effect in a two-level Hamiltonian formalism
The helicity of a photon traversing a magnetized plasma can flip when the
B-field along the trajectory slowly reverses. Broderick and Blandford have
recently shown that this intriguing effect can profoundly change the usual
Faraday effect for radio waves. We study this phenomenon in a formalism
analogous to neutrino flavor oscillations: the evolution is governed by a
Schroedinger equation for a two-level system consisting of the two photon
helicities. Our treatment allows for a transparent physical understanding of
this system and its dynamics. In particular, it allows us to investigate the
nature of transitions at intermediate adiabaticities.Comment: 8 pages, 2 eps figures, and a note added. Title changed. Matches
published versio
Soliton states in mesoscopic two-band-superconducting cylinders
In the framework of the Ginzburg-Landau approach, we present a
self-consistent theory of specific soliton states in mesoscopic (thin-walled)
two-band-superconducting cylinders in external parallel magnetic fields. Such
states arise in the presence of "Josephson-type" interband coupling, when phase
winding numbers are different for each component of the superconducting order
parameter. We evaluate the Gibbs free energy of the sysyem up to second-order
terms in a certain dimensionless parameter
, where
and are the magnetic and kinetic
inductance, respectively. We derive the complete set of exact soliton
solutions. These solutions are thoroughly analyzed from the viewpoint of both
local and global (thermodynamic) stability. In particular, we show that
rotational-symmetry-breaking caused by the formation of solitons gives rise to
a zero-frequency rotational mode. Although soliton states prove to be
thermodynamically metastable, the minimal energy gap between the lowest-lying
single-soliton states and thermodynamically stable zero-soliton states can be
much smaller than the magnetic Gibbs free energy of the latter states, provided
that intraband "penetration depths" differ substantially and interband coupling
is weak. The results of our investigation may apply to a wide class of
mesoscopic doubly-connected structures exhibiting two-band superconductivity.Comment: 15 pages, 3 figure
- …
