2,153 research outputs found
Global Properties of Spherical Nuclei Obtained from Hartree-Fock-Bogoliubov Calculations with the Gogny Force
Selfconsistent Hartree-Fock-Bogoliubov (HFB) calculations have been performed
with the Gogny force for nuclei along several constant Z and constant N chains,
with the purpose of extracting the macroscopic part of the binding energy using
the Strutinsky prescription. The macroscopic energy obtained in this way is
compared to current liquid drop formulas. The evolution of the single particle
levels derived from the HFB calculations along the constant Z and constant N
chains and the variations of the different kinds of nuclear radii are also
analysed. Those radii are shown to follow isospin-dependent three parameter
laws close to the phenomenological formulas which reproduce experimental data.Comment: 17 pages in LaTeX and 17 figures in eps. Phys. Rev. C, accepted for
publicatio
The Neutron Halo in Heavy Nuclei Calculated with the Gogny Force
The proton and neutron density distributions, one- and two-neutron separation
energies and radii of nuclei for which neutron halos are experimentally
observed, are calculated using the self-consistent Hartree-Fock-Bogoliubov
method with the effective interaction of Gogny. Halo factors are evaluated
assuming hydrogen-like antiproton wave functions. The factors agree well with
experimental data. They are close to those obtained with Skyrme forces and with
the relativistic mean field approach.Comment: 13 pages in Latex and 17 figures in ep
High precision determination of the -evolution of the Bjorken Sum
We present a significantly improved determination of the Bjorken Sum for
0.64.8 GeV using precise new and
data taken with the CLAS detector at Jefferson Lab. A higher-twist analysis of
the -dependence of the Bjorken Sum yields the twist-4 coefficient
. This leads to the color
polarizabilities and
. The strong force coupling is determined to be
\alpha_{s}^{\overline{\mbox{ MS}}}(M_{Z}^{2})=0.1124\pm0.0061, which has an
uncertainty a factor of 1.5 smaller than earlier estimates using polarized DIS
data. This improvement makes the comparison between extracted from
polarized DIS and other techniques a valuable test of QCD.Comment: Published in Phys. Rev. D. V1: 8 pages, 3 figures. V2: Updated
references; Included threshold matching in \alpha_s evolution. Corrected a
typo on the uncertainty for \Lambda_QCD. V3: Published versio
Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction
A systematic study of low energy nuclear structure at normal deformation is
carried out using the Hartree-Fock-Bogoliubov theory extended by the Generator
Coordinate Method and mapped onto a 5-dimensional collective quadrupole
Hamiltonian. Results obtained with the Gogny D1S interaction are presented from
dripline to dripline for even-even nuclei with proton numbers Z=10 to Z=110 and
neutron numbers N less than 200. The properties calculated for the ground
states are their charge radii, 2-particle separation energies, correlation
energies, and the intrinsic quadrupole shape parameters. For the excited
spectroscopy, the observables calculated are the excitation energies and
quadrupole as well as monopole transition matrix elements. We examine in this
work the yrast levels up to J=6, the lowest excited 0^+ states, and the two
next yrare 2^+ states. The theory is applicable to more than 90% of the nuclei
which have tabulated measurements. The data set of the calculated properties of
1712 even-even nuclei, including spectroscopic properties for 1693 of them, are
provided in CEA website and EPAPS repository with this article \cite{epaps}.Comment: 51 pages with 26 Figures and 4 internal tables; this version is
accepted by Physical Review
A fitter code for Deep Virtual Compton Scattering and Generalized Parton Distributions
We have developped a fitting code based on the leading-twist handbag Deep
Virtual Compton Scattering (DVCS) amplitude in order to extract the Generalized
Parton Distributions (GPD) information from DVCS observables in the valence
region. In a first stage, with simulations and pseudo-data, we show that the
full GPD information can be recovered from experimental data if enough
observables are measured. If only part of these observables are measured,
valuable information can still be extracted, certain observables being
particularly sensitive to certain GPDs. In a second stage, we make a practical
application of this code to the recent DVCS Jefferson Lab Hall A data from
which we can extract numerical constraints for the two GPD Compton Form
Factors.Comment: 15 pages, 8 figure
Visualising the past – an evaluation of processes and sequences for fingermark recovery from old documents
This study aimed to collect data on the effectiveness of most of the fingermark visualisation reagents currently used on porous surfaces on fingermarks aged for up to 90 years, significantly extending the timescales for which such information exists. A limited subset of the variables associated with processing of old fingermarks was explored, with a focus on the use of 1,8 diazafluoren-9-one (DFO), 1,2-indandione, ninhydrin, and physical developer. These techniques were used in sequence on batches of cheques between 11 and 32 years old, and on documents dating from the 1920s and 1940s. The potential for applying a physical developer enhancement process (blue toning) as the final step in the sequence was also explored. The benefits of using processing sequences on porous items were clearly demonstrated, with all processes in the sequence adding value in terms of additional marks found on the cheques up to 32 years old. In addition, physical developer was found to be capable of developing fingermarks up to 90 years old, whereas the amino acid reagents appear less effective on documents of 70 years and older. An experimental physical developer formulation with reduced environmental impact was found to be as effective as the existing process in these experiments. Blue toning was found to visualise an additional 10-25% of marks, and its wider use after silver-based deposition processes is recommended based on the evidence from this study.Peer reviewedFinal Accepted Versio
Open Problems in Particle Condensation
particle condensation is a novel state in nuclear systems. We
briefly review the present status on the study of particle
condensation and address the open problems in this research field:
particle condensation in heavier systems other than the Hoyle state, linear
chain and particle rings, Hoyle-analogue states with extra neutrons,
particle condensation related to astrophysics, etc.Comment: 12 pages. To be published in J. of Phys. G special issue on Open
Problems in Nuclear Structure (OPeNST
- …
