538 research outputs found

    Mechanisms of soil carbon storage in experimental grasslands

    No full text
    International audienceWe investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m?2 and 263 g C m?2 to 20 cm depth, while 71 g C m?2 and 393 g C m?2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons

    The stable isotopic signature of biologically produced molecular hydrogen (H<sub>2</sub>)

    Get PDF
    Biologically produced molecular hydrogen (H<sub>2</sub>) is characterised by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of H<sub>2</sub>. Large uncertainties exist in the quantification of the individual production and degradation processes that contribute to the atmospheric budget, and isotope measurements are a tool to distinguish the contributions from the different sources. Measurements of &delta; D from the various H<sub>2</sub> sources are scarce and for biologically produced H<sub>2</sub> only very few measurements exist. <br><br> Here the first systematic study of the isotopic composition of biologically produced H<sub>2</sub> is presented. In a first set of experiments, we investigated &delta; D of H<sub>2</sub> produced in a biogas plant, covering different treatments of biogas production. In a second set of experiments, we investigated pure cultures of several H<sub>2</sub> producing microorganisms such as bacteria or green algae. A Keeling plot analysis provides a robust overall source signature of &delta; D = &minus;712&permil; (±13&permil;) for the samples from the biogas reactor (at 38 °C, &delta; D<sub>H2O</sub>= +73.4&permil;), with a fractionation constant &varepsilon;<sub>H2-H2O</sub> of −689&permil; (±20&permil;) between H<sub>2</sub> and the water. The five experiments using pure culture samples from different microorganisms give a mean source signature of &delta; D = &minus;728&permil; (±28&permil;), and a fractionation constant &varepsilon;<sub>H2-H2O</sub> of −711&permil; (±34&permil;) between H<sub>2</sub> and the water. The results confirm the massive deuterium depletion of biologically produced H<sub>2</sub> as was predicted by the calculation of the thermodynamic fractionation factors for hydrogen exchange between H<sub>2</sub> and water vapour. Systematic errors in the isotope scale are difficult to assess in the absence of international standards for &delta; D of H<sub>2</sub>. <br><br> As expected for a thermodynamic equilibrium, the fractionation factor is temperature dependent, but largely independent of the substrates used and the H<sub>2</sub> production conditions. The equilibrium fractionation coefficient is positively correlated with temperature and we measured a rate of change of 2.3&permil; / °C between 45 °C and 60 °C, which is in general agreement with the theoretical prediction of 1.4&permil; / °C. Our best experimental estimate for &varepsilon;<sub>H2-H2O</sub> at a temperature of 20 °C is −731&permil; (±20&permil;) for biologically produced H<sub>2</sub>. This value is close to the predicted value of −722&permil;, and we suggest using these values in future global H<sub>2</sub> isotope budget calculations and models with adjusting to regional temperatures for calculating &delta; D values

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure

    Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML

    Get PDF
    Occurrence of the BCR-ABL[superscript T315I] gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABL[superscript T315I]. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABL[superscript T315I] CML cells on c-Myc through nonobvious off targets

    Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope

    Get PDF
    This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed
    corecore