2,255 research outputs found
Chiral condensate at finite density using chiral Ward identity
In order to study partial restoration of the chiral symmetry at finite
density, we investigate the density corrections of the chiral condensate up to
next-leading order of density expansion using the chiral Ward identity and an
in-medium chiral perturbation theory. In our study, we assume that all the
in-vacuum quantities for the pion, the nucleon and the pi N interaction are
determined and focus on density expansion of the in-medium physical quantities.
We perform diagrammatic analysis of the correlation functions which provide the
in-medium chiral condensate. This density expansion scheme shows that medium
effects to the chiral condensate beyond the linear density come from density
corrections to the pi N sigma term as a result of the interactions between pion
and nucleon in nuclear matter. We also discuss that higher density
contributions beyond order of rho^2 cannot be fixed only by the in-vacuum pi N
dynamics but we need NN two-body dynamics in vacuum to fix divergence appearing
in the calculation of the rho^2 dependence of the chiral condensate with the pi
N dynamics.Comment: 13 pages, 9 figure
Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures
Seizures are a common manifestation of acute neurologic insults in neonates and are often resistant to the standard antiepileptic drugs that are efficacious in children and adults. The paucity of evidence-based treatment guidelines, coupled with a rudimentary understanding of disease pathogenesis, has made the current treatment of neonatal seizures empiric and often ineffective, highlighting the need for novel therapies. Key developmental differences in γ-aminobutyric acid (GABA)ergic neurotransmission between the immature and mature brain, and trauma-induced alterations in the function of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2, probably contribute to the poor efficacy of standard antiepileptic drugs used in the treatment of neonatal seizures. Although CCCs are attractive drug targets, bumetanide and other existing CCC inhibitors are suboptimal because of pharmacokinetic constraints and lack of target specificity. Newer approaches including isoform-specific NKCC1 inhibitors with increased central nervous system penetration, and direct and indirect strategies to enhance KCC2-mediated neuronal chloride extrusion, might allow therapeutic modulation of the GABAergic system for neonatal seizure treatment.Peer reviewe
Role of phason-defects on the conductance of a 1-d quasicrystal
We have studied the influence of a particular kind of phason-defect on the
Landauer resistance of a Fibonacci chain. Depending on parameters, we sometimes
find the resistance to decrease upon introduction of defect or temperature, a
behavior that also appears in real quasicrystalline materials. We demonstrate
essential differences between a standard tight-binding model and a full
continuous model. In the continuous case, we study the conductance in relation
to the underlying chaotic map and its invariant. Close to conducting points,
where the invariant vanishes, and in the majority of cases studied, the
resistance is found to decrease upon introduction of a defect. Subtle
interference effects between a sudden phason-change in the structure and the
phase of the wavefunction are also found, and these give rise to resistive
behaviors that produce exceedingly simple and regular patterns.Comment: 12 pages, special macros jnl.tex,reforder.tex, eqnorder.tex. arXiv
admin note: original tex thoroughly broken, figures missing. Modified so that
tex compiles, original renamed .tex.orig in source
Collapse of Showa Bridge during1964 Niigata earthquake: a quantitative reappraisal on the failure mechanisms
Isolation and molecular characterization of novel glucarpidases:Enzymes to improve the antibody directed enzyme pro-drug therapy for cancer treatment
<div><p>Repeated cycles of antibody-directed enzyme pro-drug therapy (ADEPT) and the use of glucarpidase in the detoxification of cytotoxic methotrexate (MTX) are highly desirable during cancer therapy but are hampered by the induced human antibody response to glucarpidase. Novel variants of glucarpidase (formal name: carboxypeptidase G2, CPG2) with epitopes not recognized by the immune system are likely to allow repeated cycles of ADEPT for effective cancer therapy. Towards this aim, over two thousand soil samples were collected and screened for folate hydrolyzing bacteria using folate as the sole carbon source. The work led to the isolation and the characterization of three new glucarpidase producing strains, which were designated as: <i>Pseudomonas lubricans</i> strain SF168, <i>Stenotrophomonas</i> sp SA and <i>Xenophilus azovorans</i> SN213. The <i>CPG2</i> genes of <i>Xenophilus azovorans</i> SN213 (named <i>Xen CPG2</i>) and <i>Stenotrophomonas sp</i> SA (named <i>Sten CPG2</i>) were cloned and molecularly characterized. Both Xen CPG2 and Sten CPG2 share very close amino acid sequences (99%); we therefore, focused on the study of Xen CPG2. Finally, we demonstrated that a polyclonal antibody raised against our new CPG2, Xen CPG2, does not react with the CPG2 from <i>Pseudomonas sp</i>. strain RS-16 (Ps CPG2) that are currently in clinical use. The two enzymes, therefore could potentially be used consecutively in the ADEPT protocol to minimize the effect of the human antibody response that hampers current treatment with Ps CPG2. The identified novel CPG2 in this study will, therefore, pave the way for safer antibody directed enzyme pro-drug therapy for cancer treatment.</p></div
Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories
Modern computing systems are embracing hybrid memory comprising of DRAM and
non-volatile memory (NVM) to combine the best properties of both memory
technologies, achieving low latency, high reliability, and high density. A
prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access
latency much higher than DRAM access latency. We call this inter-memory
asymmetry. We observe that parasitic components on a long bitline are a major
source of high latency in both DRAM and NVM, and a significant factor
contributing to high-voltage operations in NVM, which impact their reliability.
We propose an architectural change, where each long bitline in DRAM and NVM is
split into two segments by an isolation transistor. One segment can be accessed
with lower latency and operating voltage than the other. By introducing tiers,
we enable non-uniform accesses within each memory type (which we call
intra-memory asymmetry), leading to performance and reliability trade-offs in
DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we
exploit both inter- and intra-memory asymmetries to allocate and migrate memory
pages between the tiers in DRAM and NVM. Second, we improve the OS's page
allocation decisions by predicting the access intensity of a newly-referenced
memory page in a program and placing it to a matching tier during its initial
allocation. This minimizes page migrations during program execution, lowering
the performance overhead. Third, we propose a solution to migrate pages between
the tiers of the same memory without transferring data over the memory channel,
minimizing channel occupancy and improving performance. Our overall approach,
which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid
tiered memory improves both performance and reliability for both single-core
and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium
on Memory Managemen
The 2016 Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks
A sequence of two strike-slip earthquakes occurred on April 14 and 16, 2016 in the intraplate region of Kyushu Island, Japan, apart from subduction zones, and caused significant damage and disruption to the Kumamoto region. The analyses of regional seismic catalog and available strong motion recordings reveal striking characteristics of the events, such as migrating seismicity, earthquake surface rupture, and major foreshock-mainshock earthquake sequences. To gain valuable lessons from the events, a UK Earthquake Engineering Field Investigation Team (EEFIT) was dispatched to Kumamoto, and earthquake damage surveys were conducted to relate observed earthquake characteristics to building and infrastructure damage caused by the earthquakes. The lessons learnt from the reconnaissance mission have important implications on current seismic design practice regarding the required seismic resistance of structures under multiple shocks and the seismic design of infrastructure subject to large ground deformation. The observations also highlight the consequences of cascading geological hazards on community resilience. To share the gathered damage data widely, geo-tagged photos are organized using Google Earth and the kmz file is made publicly available.The work is funded by the EPSRC grant (EP/I01778X/1) for the Earthquake Engineering Field Investigation Team (EEFIT). The financial supports for industrial members (GC, LH, LK, and RM) are provided by Arup, Mott MacDonald, and Willis
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
We report on a search for gravitational waves from the coalescence of compact
binaries during the third and fourth LIGO science runs. The search focused on
gravitational waves generated during the inspiral phase of the binary
evolution. In our analysis, we considered three categories of compact binary
systems, ordered by mass: (i) primordial black hole binaries with masses in the
range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses
in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes
with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional
constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0
M(sun) in the third and fourth science runs, respectively. Although the
detectors could probe to distances as far as tens of Mpc, no gravitational-wave
signals were identified in the 1364 hours of data we analyzed. Assuming a
binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4
M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9
yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for
binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black
holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
All-sky search for periodic gravitational waves in LIGO S4 data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50-1000 Hz and with the frequency's
time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO
science run (S4) have been used in this search. Three different semi-coherent
methods of transforming and summing strain power from Short Fourier Transforms
(SFTs) of the calibrated data have been used. The first, known as "StackSlide",
averages normalized power from each SFT. A "weighted Hough" scheme is also
developed and used, and which also allows for a multi-interferometer search.
The third method, known as "PowerFlux", is a variant of the StackSlide method
in which the power is weighted before summing. In both the weighted Hough and
PowerFlux methods, the weights are chosen according to the noise and detector
antenna-pattern to maximize the signal-to-noise ratio. The respective
advantages and disadvantages of these methods are discussed. Observing no
evidence of periodic gravitational radiation, we report upper limits; we
interpret these as limits on this radiation from isolated rotating neutron
stars. The best population-based upper limit with 95% confidence on the
gravitational-wave strain amplitude, found for simulated sources distributed
isotropically across the sky and with isotropically distributed spin-axes, is
4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches
on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C
parameter defined in equation 44 which led to its overestimate by 2^(1/4).
The correct values for the multi-interferometer, H1 and L1 analyses are 9.2,
9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of
the upper limits presented in the paper were affecte
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
- …
