721 research outputs found

    Luttinger liquids with curvature: Density correlations and Coulomb drag effect

    Full text link
    We consider the effect of the curvature in fermionic dispersion on the observable properties of Luttinger liquid (LL). We use the bosonization technique where the curvature is irrelevant perturbation, describing the decay of LL bosons (plasmon modes). When possible, we establish the correspondence between the bosonization and the fermionic approach. We analyze modifications in density correlation functions due to curvature at finite temperatures, T. The most important application of our approach is the analysis of the Coulomb drag by small momentum transfer between two LL, which is only possible due to curvature. Analyzing the a.c. transconductivity in the one-dimensional drag setup, we confirm the results by Pustilnik et al. for T-dependence of drag resistivity, R_{12} ~ T^2 at high and R_{12} ~ T^5 at low temperatures. The bosonization allows for treating both intra- and inter-wire electron-electron interactions in all orders, and we calculate exact prefactors in low-T drag regime. The crossover temperature between the two regimes is T_1 ~ E_F \Delta, with \Delta relative difference in plasmon velocities. We show that \Delta \neq 0 even for identical wires, due to lifting of degeneracy by interwire interaction, U_{12}, leading to crossover from R_{12} ~ U_{12}^2 T^2 to R_{12} \~ T^5/U_{12} at T ~ U_{12}.Comment: 16 pages, 10 figures, REVTE

    Three-Component Fermi Gas in a one-dimensional Optical Lattice

    Full text link
    We investigate the effect of the anisotropy between the s-wave scattering lengths of a three-component atomic Fermi gas loaded into a one-dimensional optical lattice. We find four different phases which support trionic instabilities made of bound states of three fermions. These phases distinguish themselves by the relative phases between the 2kFk_F atomic density waves fluctuations of the three species. At small enough densities or strong anisotropies we give further evidences for a decoupling and the stabilization of more conventional BCS phases. Finally our results are discussed in light of a recent experiment on 6^{6}Li atoms.Comment: 4 pages, published version. Experimental discussion has been extende

    Line junction in a quantum Hall system with two filling fractions

    Get PDF
    We present a microscopic model for a line junction formed by counter or co-propagating single mode quantum Hall edges corresponding to different filling factors. The ends of the line junction can be described by two possible current splitting matrices which are dictated by the conditions of both lack of dissipation and the existence of a linear relation between the bosonic fields. Tunneling between the two edges of the line junction then leads to a microscopic understanding of a phenomenological description of line junctions introduced some time ago. The effect of density-density interactions between the two edges is considered, and renormalization group ideas are used to study how the tunneling parameter changes with the length scale. This leads to a power law variation of the conductance of the line junction with the temperature. Depending on the strength of the interactions the line junction can exhibit two quite different behaviors. Our results can be tested in bent quantum Hall systems fabricated recently.Comment: 9 pages including 4 figure

    Order in a Spatially Anisotropic Triangular Antiferromagnet

    Full text link
    The phase diagram of the spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice of weakly coupled chains, a model relevant to Cs2CuCl4, is investigated using a renormalization group analysis, which includes marginal couplings important for connecting to numerical studies of this model. In particular, the relative stability of incommensurate spiral spin-density order and collinear antiferromagnetic order is studied. While incommensurate spiral order is found to exist over most of the phase diagram in the presence of a Dzyaloshinskii-Moriya (DM) interaction, at small interchain and extremely weak DM couplings, collinear antiferromagnetic order can survive. Our results imply that Cs2CuCl4 is well within the part of the phase diagram where spiral order is stable. The implications of the renormalization group analysis for numerical studies, many of which have found spin-liquidlike behavior, are discussed.Comment: 10 pages, 7 figures, minor edits and reference adde

    Extended dual description of Mott transition beyond two-dimensional space

    Full text link
    Motivated by recent work of Mross and Senthil [Phys. Rev. B \textbf{84}, 165126 (2011)] which provides a dual description for Mott transition from Fermi liquid to quantum spin liquid in two space dimensions, we extend their approach to higher dimensional cases, and we provide explicit formalism in three space dimensions. Instead of the vortices driving conventional Fermi liquid into quantum spin liquid states in 2D, it is the vortex lines to lead to the instability of Fermi liquid in 3D. The extended formalism can result in rich consequences when the vortex lines condense in different degrees of freedom. For example, when the vortex lines condense in charge phase degrees of freedom, the resulting effective fermionic action is found to be equivalent to that obtained by well-studied slave-particle approaches for Hubbard and/or Anderson lattice models, which confirm the validity of the extended dual formalism in 3D. When the vortex lines condense in spin phase degrees of freedom, a doublon metal with a spin gap and an instability to the unconventional superconducting pairing can be obtained. In addition, when the vortex lines condense in both phase degrees, an exotic doubled U(1) gauge theory occurs which describes a separation of spin-opposite fermionic excitations. It is noted that the first two features have been discussed in a similar way in 2D, the last one has not been reported in the previous works. The present work is expected to be useful in understanding the Mott transition happening beyond two space dimensions.Comment: 7 pages, no figure

    Interactions suppress Quasiparticle Tunneling at Hall Bar Constrictions

    Full text link
    Tunneling of fractionally charged quasiparticles across a two-dimensional electron system on a fractional quantum Hall plateau is expected to be strongly enhanced at low temperatures. This theoretical prediction is at odds with recent experimental studies of samples with weakly-pinched quantum-point-contact constrictions, in which the opposite behavior is observed. We argue here that this unexpected finding is a consequence of electron-electron interactions near the point contact.Comment: 4 page

    Full counting statistics for the Kondo dot in the unitary limit

    Full text link
    We calculate the charge transfer probability distribution function χ(λ)\chi(\lambda) for the Kondo dot in the strong coupling limit within the framework of the Nozi\`{e}res--Fermi--liquid theory of the Kondo effect. At zero temperature, the ratio of the moments CnC_n of the charge distribution to the backscattering current IbsI_{{\rm bs}} follows a universal law Cn/2Ibs=(1)n(1+2n)/6C_n/2I_{{\rm bs}}=(-1)^n(1+2^n)/6. The functional form of χ(λ)\chi(\lambda) is consistent with tunnelling of electrons and, possibly, electron pairs. We then discuss the cross-over behaviour of χ(λ)\chi(\lambda) from weak to strong Coulomb repulsion in the underlying Anderson impurity model and relate this to the existing results. Finally, we extend our analysis to the case of finite temperatures.Comment: 5 pages, 1 eps figur

    Ultra-cold bosons in zig-zag optical lattices

    Get PDF
    Ultra-cold bosons in zig-zag optical lattices present a rich physics due to the interplay between frustration, induced by lattice geometry, two-body interaction and three-body constraint. Unconstrained bosons may develop chiral superfluidity and a Mott-insulator even at vanishingly small interactions. Bosons with a three-body constraint allow for a Haldane-insulator phase in non-polar gases, as well as pair-superfluidity and density wave phases for attractive interactions. These phases may be created and detected within the current state of the art techniques.Comment: 8 pages, 9 figure

    Interaction-induced harmonic frequency mixing in quantum dots

    Full text link
    We show that harmonic frequency mixing in quantum dots coupled to two leads under the influence of time-dependent voltages of different frequency is dominated by interaction effects. This offers a unique and direct spectroscopic tool to access correlations, and holds promise for efficient frequency mixing in nano-devices. Explicit results are provided for an Anderson dot and for a molecular level with phonon-mediated interactions.Comment: 4 pages, 2 figures, accepted for publication in Phys.Rev.Let

    Conductance of quantum wires: a numerical study of the effects of an impurity and interactions

    Get PDF
    We use the non-equilibrium Green's function formalism along with a self-consistent Hartree-Fock approximation to numerically study the effects of a single impurity and interactions between the electrons (with and without spin) on the conductance of a quantum wire. We study how the conductance varies with the wire length, the temperature, and the strength of the impurity and interactions. The dependence of the conductance on the wire length and temperature is found to be in rough agreement with the results obtained from a renormalization group analysis based on the Hartree-Fock approximation. For the spin-1/2 model with a repulsive on-site interaction or the spinless model with an attractive nearest neighbor interaction, we find that the conductance increases with increasing wire length or decreasing temperature. This can be qualitatively explained using the Born approximation in scattering theory. For a strong impurity, the conductance is significantly different for a repulsive and an attractive impurity; this is due to the existence of a bound state in the latter case. In general, the large density deviations at short distances have an appreciable effect on the conductance which is not captured by the renormalization group analysis.Comment: Revtex, 15 pages including 21 figures; all the numerical calculations have been re-done with a Fermi wavenumber of pi/10; this is the version published in Phys Rev
    corecore