272 research outputs found

    Two-Pion Exchange Currents in Photodisintegration of the Deuteron

    Full text link
    Chiral effective field theory (ChEFT) is a modern framework to analyze the properties of few-nucleon systems at low energies. It is based on the most general effective Lagrangian for pions and nucleons consistent with the chiral symmetry of QCD. For energies below the pion-production threshold it is possible to eliminate the pionic degrees of freedom and derive nuclear potentials and nuclear current operators solely in terms of the nucleonic degrees of freedom. This is very important because, despite a lot of experience gained in the past, the consistency between two-nucleon forces, many-nucleon forces and the corresponding current operators has not been achieved yet. In this presentation we consider the recently derived long-range two-pion exchange (TPE) contributions to the nuclear current operator which appear at next-to leading order of the chiral expansion. These operators do not contain any free parameters. We study their role in the deuteron photodisintegration reaction and compare our predictions with experimental data. The bound and scattering states are calculated using five different chiral N2LO nucleon-nucleon (NN) potentials which allows to estimate the theoretical uncertainty at a given order in the chiral expansion. For some observables the results are very close to the reference predictions based on the AV18 NN potential and the current operator (partly) consistent with this force.Comment: Contribution to the 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2010), Williamsburg, USA, May 31-June 4, 201

    Deuteron disintegration in three dimensions

    Get PDF
    We compare results from the traditional partial wave treatment of deuteron electro-disintegration with a new approach that uses three dimensional formalism. The new framework for the two-nucleon (2N) system using a complete set of isospin - spin states made it possible to construct simple implementations that employ a very general operator form of the current operator and 2N states.Comment: 24 pages, 15 eps figure

    Utjecaj parametara indukcijske elektro peći na brzinu masenog prijenosa u tekućoj fazi

    Get PDF
    This article is an analysis of the results obtained under the tests aimed at determination of the influence exerted by the current frequency of an induction furnace on the mass transfer coefficient for liquid metallic phase.U radu su analizirani rezultati dobiveni testiranjem provedenim s ciljem utvrditi utjecaj frekvencije industrijske peći na maseni koeficijent prijenosa u tekućoj metalnoj fazi

    A Three-Dimensional Treatment of the Three-Nucleon Bound State

    Full text link
    Recently a formalism for a direct treatment of the Faddeev equation for the three-nucleon bound state in three dimensions has been proposed. It relies on an operator representation of the Faddeev component in the momentum space and leads to a finite set of coupled equations for scalar functions which depend only on three variables. In this paper we provide further elements of this formalism and show the first numerical results for chiral NNLO nuclear forces.Comment: 25 pages, 7 figures (34 eps files

    Final state interaction effects in mu-capture induced two-body decay of 3He

    Get PDF
    The mu-capture process on 3He leading to a neutron, a deuteron and a mu-neutrino in the final state is studied. Three-nucleon Faddeev wave functions for the initial 3He bound and the final neutron-deuteron scattering states are calculated using the BonnB and Paris nucleon-nucleon potentials. The nuclear weak current operator is restricted to impulse approximation. Large effects on the decay rates of the final state interaction are found. The comparison to recent experimental data shows that the inclusion of final state interactions drastically improves the description of the data.Comment: 14 pages, 6 eps figure

    Triton photodisintegration in three-dimensional approach

    Full text link
    Two- and three- particles photodisintegration of the triton is investigated in a three-dimensional (3D) Faddeev approach. For this purpose the Jacobi momentum vectors for three particles system and spin-isospin quantum numbers of the individual nucleons are considered. Based on this picture the three-nucleon Faddeev integral equations with the two-nucleon interaction are formulated without employing the partial wave decomposition. The single nucleon current as well as π\pi- and ρ\rho- like exchange currents are used in an appropriate form to be employed in 3D approach. The exchange currents are derived from AV18 NN force. The two-body t-matrix, Deuteron and Triton wave functions are calculated in the 3D approach by using AV18 potential. Benchmarks are presented to compare the total cross section for the two- and three- particles photodisintegration in the range of Eγ<30MeVE_{\gamma}<30 MeV. The 3D Faddeev approach shows promising results

    Signatures of the chiral two-pion exchange electromagnetic currents in the 2H and 3He photodisintegration reactions

    Get PDF
    The recently derived long-range two-pion exchange (TPE) contributions to the nuclear current operator which appear at next-to-leading order (NLO) of the chiral expansion are used to describe electromagnetic processes. We study their role in the photodisintegration of 2H and 3He and compare our predictions with experimental data. The bound and scattering states are calculated using five different parametrizations of the chiral next-to-next-to-leading order (N2LO) nucleon-nucleon (NN) potential which allows us to estimate the theoretical uncertainty at a given order in the chiral expansion. For some observables the results are very close to the predictions based on the AV18 NN potential and the current operator (partly) consistent with this force. In the most cases, the addition of long-range TPE currents improved the description of the experimental data.Comment: 11 pages, 6 figures (35 eps files

    On the Accuracy of Hyperspherical Harmonics Approaches to Photonuclear Reactions

    Full text link
    Using the Lorentz Integral Transform (LIT) method we compare the results for the triton total photodisintegration cross section obtained using the Correlated Hyperspherical Harmonics (CHH) and the Effective Interaction Hyperspherical Harmonics (EIHH) techniques. We show that these two approaches, while rather different both conceptually and computationally, lead to results which coincide within high accuracy. The calculations which include two- and three-body forces are of the same high quality in both cases. We also discuss the comparison of the two approaches in terms of computational efficiency. These results are of major importance in view of applications to the much debated case of the four-nucleon photoabsorption.Comment: 12 pages, 3 figure

    Inclusive Scattering of Polarized Electrons on Polarized 3He Effects of Final State Interaction and the Magnetic Form Factor of the Neutron

    Get PDF
    Effects of final state interaction on asymmetries in inclusive scattering of polarized electrons on polarized 3He are investigated using consistent 3He bound state wave function and 3N continuum scattering states. Significant effects are found, which influence the extraction of the magnetic neutron form factor from A_T'. The enhancement found experimentally for A_TL' near the 3N breakup threshold, which could not be explained in calculations carried through in plane wave impulse approximation up to now, occurs now also in theory if the full final state interaction is included.Comment: 29 pages, 5 figure
    corecore