2,942 research outputs found
The multilevel trigger system of the DIRAC experiment
The multilevel trigger system of the DIRAC experiment at CERN is presented.
It includes a fast first level trigger as well as various trigger processors to
select events with a pair of pions having a low relative momentum typical of
the physical process under study. One of these processors employs the drift
chamber data, another one is based on a neural network algorithm and the others
use various hit-map detector correlations. Two versions of the trigger system
used at different stages of the experiment are described. The complete system
reduces the event rate by a factor of 1000, with efficiency 95% of
detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure
Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis.
PURPOSE:Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. METHODS:A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. RESULTS:Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. CONCLUSIONS AND IMPORTANCE:Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images
Fano interference and cross-section fluctuations in molecular photodissociation
We derive an expression for the total photodissociation cross section of a
molecule incorporating both indirect processes that proceed through excited
resonances, and direct processes. We show that this cross section exhibits
generalized Beutler-Fano line shapes in the limit of isolated resonances.
Assuming that the closed system can be modeled by random matrix theory, we
derive the statistical properties of the photodissociation cross section and
find that they are significantly affected by the direct processes. We identify
a unique signature of the direct processes in the cross-section distribution in
the limit of isolated resonances.Comment: 4 pages, 4 figure
Fidelity and level correlations in the transition from regularity to chaos
Mean fidelity amplitude and parametric energy--energy correlations are
calculated exactly for a regular system, which is subject to a chaotic random
perturbation. It turns out that in this particular case under the average both
quantities are identical. The result is compared with the susceptibility of
chaotic systems against random perturbations. Regular systems are more
susceptible against random perturbations than chaotic ones.Comment: 7 pages, 1 figur
Engineering fidelity echoes in Bose-Hubbard Hamiltonians
We analyze the fidelity decay for a system of interacting bosons described by
a Bose-Hubbard Hamiltonian. We find echoes associated with "non-universal"
structures that dominate the energy landscape of the perturbation operator.
Despite their classical origin, these echoes persist deep into the quantum
(perturbative) regime and can be described by an improved random matrix
modeling. In the opposite limit of strong perturbations (and high enough
energies), classical considerations reveal the importance of self-trapping
phenomena in the echo efficiency.Comment: 6 pages, use epl2.cls class, 5 figures Cross reference with nlin,
quant-phy
Intermediate statistics in quantum maps
We present a one-parameter family of quantum maps whose spectral statistics
are of the same intermediate type as observed in polygonal quantum billiards.
Our central result is the evaluation of the spectral two-point correlation form
factor at small argument, which in turn yields the asymptotic level
compressibility for macroscopic correlation lengths
De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa.
BackgroundRetinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa.MethodsVariant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing.Results and conclusionsA total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon
Signatures of the correlation hole in total and partial cross sections
In a complex scattering system with few open channels, say a quantum dot with
leads, the correlation properties of the poles of the scattering matrix are
most directly related to the internal dynamics of the system. We may ask how to
extract these properties from an analysis of cross sections. In general this is
very difficult, if we leave the domain of isolated resonances. We propose to
consider the cross correlation function of two different elastic or total cross
sections. For these we can show numerically and to some extent also
analytically a significant dependence on the correlations between the
scattering poles. The difference between uncorrelated and strongly correlated
poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde
International ring trials for adoption and validation of real-time RT-PCR protocols for sub-typing European swine influenza viruses
- …
