1,838 research outputs found
Out-of-time-order correlators in finite open systems
We study out-of-time order correlators (OTOCs) of the form for a quantum system weakly coupled to
a dissipative environment. Such an open system may serve as a model of, e.g., a
small region in a disordered interacting medium coupled to the rest of this
medium considered as an environment. We demonstrate that for a system with
discrete energy levels the OTOC saturates exponentially to a constant value at , in contrast
with quantum-chaotic systems which exhibit exponential growth of OTOCs.
Focussing on the case of a two-level system, we calculate microscopically the
decay times and the value of the saturation constant. Because some
OTOCs are immune to dephasing processes and some are not, such correlators may
decay on two sets of parametrically different time scales related to inelastic
transitions between the system levels and to pure dephasing processes,
respectively. In the case of a classical environment, the evolution of the OTOC
can be mapped onto the evolution of the density matrix of two systems coupled
to the same dissipative environment.Comment: 4.3 pages, 3 figures + 4 pages of Supplemental Materia
Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere
We numerically examine the spatial evolution of the structure of coherent and
partially coherent laser beams (PCBs), including the optical vortices,
propagating in turbulent atmospheres. The influence of beam fragmentation and
wandering relative to the axis of propagation (z-axis) on the value of the
scintillation index (SI) of the signal at the detector is analyzed. A method
for significantly reducing the SI, by averaging the signal at the detector over
a set of PCBs, is described. This novel method is to generate the PCBs by
combining two laser beams - Gaussian and vortex beams, with different
frequencies (the difference between these two frequencies being significantly
smaller than the frequencies themselves). In this case, the SI is effectively
suppressed without any high-frequency modulators.Comment: 13 pages, 8 figure
On the forward-backward charge asymmetry in e+e- -annihilation into hadrons at high energies
The forward-backward asymmetry in e+ e- annihilation into a quark-antiquark
pair is considered in the double-logarithmic approximation at energies much
higher than the masses of the weak bosons. It is shown that after accounting to
all orders for the exchange of virtual photons and W, Z -bosons one is lead to
the following effect (asymmetry): quarks with positive electric charge (e.g. u,
\bar{d}) tend to move in the e+ - direction whereas quarks with negative
charges (e.g. d, \bar{u}) tend to move in the e- - direction. The value of the
asymmetry grows with increasing energy when the produced quarks are within a
cone with opening angle, in the cmf, \theta_0\sim 2M_Z/\sqrt{s} around the e+e-
-beam. Outside this cone, at \theta_0 << \theta << 1, the asymmetry is
inversely proportional to \theta .Comment: 17 Pages, 2 Tables, 4 Figures. Hadronization effects to the asymmetry
are considered with more detail
Photon storage in Lambda-type optically dense atomic media. II. Free-space model
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we
presented a universal physical picture for describing a wide range of
techniques for storage and retrieval of photon wave packets in Lambda-type
atomic media in free space, including the adiabatic reduction of the photon
group velocity, pulse-propagation control via off-resonant Raman techniques,
and photon-echo based techniques. This universal picture produced an optimal
control strategy for photon storage and retrieval applicable to all approaches
and yielded identical maximum efficiencies for all of them. In the present
paper, we present the full details of this analysis as well some of its
extensions, including the discussion of the effects of non-degeneracy of the
two lower levels of the Lambda system. The analysis in the present paper is
based on the intuition obtained from the study of photon storage in the cavity
model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].Comment: 26 pages, 8 figures. V2: significant changes in presentation, new
references, higher resolution of figure
Universal Approach to Optimal Photon Storage in Atomic Media
We present a universal physical picture for describing storage and retrieval
of photon wave packets in a Lambda-type atomic medium. This physical picture
encompasses a variety of different approaches to pulse storage ranging from
adiabatic reduction of the photon group velocity and pulse-propagation control
via off-resonant Raman fields to photon-echo based techniques. Furthermore, we
derive an optimal control strategy for storage and retrieval of a photon wave
packet of any given shape. All these approaches, when optimized, yield
identical maximum efficiencies, which only depend on the optical depth of the
medium.Comment: 4 pages, 3 figures. V2: major changes in presentation (title,
abstract, main text), simplification of derivations, new references. V3:
minor changes - final version as published in Phys. Rev. Let
Quantum many-body models with cold atoms coupled to photonic crystals
Using cold atoms to simulate strongly interacting quantum systems represents
an exciting frontier of physics. However, as atoms are nominally neutral point
particles, this limits the types of interactions that can be produced. We
propose to use the powerful new platform of cold atoms trapped near
nanophotonic systems to extend these limits, enabling a novel quantum material
in which atomic spin degrees of freedom, motion, and photons strongly couple
over long distances. In this system, an atom trapped near a photonic crystal
seeds a localized, tunable cavity mode around the atomic position. We find that
this effective cavity facilitates interactions with other atoms within the
cavity length, in a way that can be made robust against realistic
imperfections. Finally, we show that such phenomena should be accessible using
one-dimensional photonic crystal waveguides in which coupling to atoms has
already been experimentally demonstrated
Production of a pion in association with a high-Q2 dilepton pair in antiproton-proton annihilation at GSI-FAIR
We evaluate the cross section for anti-p p -> l+ l- pi0 in the forward
direction and for large lepton pair invariant mass. In this kinematical region,
the leading-twist amplitude factorises into a short-distance matrix element,
long-distance dominated antiproton Distribution Amplitudes and proton to pion
Transition Distribution Amplitudes (TDA). Using a modelling inspired from the
chiral limit for these TDAs, we obtain a first estimate of this cross section,
thus demonstrating that this process can be measured at GSI-FAIR.Comment: Latex, 5 pages, 3 figure
Photon storage in Lambda-type optically dense atomic media. I. Cavity model
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we
used a universal physical picture to optimize and demonstrate equivalence
between a wide range of techniques for storage and retrieval of photon wave
packets in Lambda-type atomic media in free space, including the adiabatic
reduction of the photon group velocity, pulse-propagation control via
off-resonant Raman techniques, and photon-echo-based techniques. In the present
paper, we perform the same analysis for the cavity model. In particular, we
show that the retrieval efficiency is equal to C/(1+C) independent of the
retrieval technique, where C is the cooperativity parameter. We also derive the
optimal strategy for storage and, in particular, demonstrate that at any
detuning one can store, with the optimal efficiency of C/(1+C), any smooth
input mode satisfying T C gamma >> 1 and a certain class of resonant input
modes satisfying T C gamma ~ 1, where T is the duration of the input mode and 2
gamma is the transition linewidth. In the two subsequent papers of the series,
we present the full analysis of the free-space model and discuss the effects of
inhomogeneous broadening on photon storage.Comment: 16 pages, 2 figures. V2: significant changes in presentation, new
references, higher resolution of figure
Faddeev-type calculations of few-body nuclear reactions including Coulomb interaction
The method of screening and renormalization is used to include the Coulomb
interaction between the charged particles in the description of few-body
nuclear reactions. Calculations are done in the framework of Faddeev-type
equations in momentum-space. The reliability of the method is demonstrated. The
Coulomb effect on observables is discussed.Comment: Proceedings of the 4th Asia-Pacific Conference on Few-Body Problems
in Physics (APFB08), Depok, Indonesia, August 19 - 23, 2008, to be published
in Mod. Phys. Lett.
Realization of Coherent Optically Dense Media via Buffer-Gas Cooling
We demonstrate that buffer-gas cooling combined with laser ablation can be
used to create coherent optical media with high optical depth and low Doppler
broadening that offers metastable states with low collisional and motional
decoherence. Demonstration of this generic technique opens pathways to coherent
optics with a large variety of atoms and molecules. We use helium buffer gas to
cool 87Rb atoms to below 7 K and slow atom diffusion to the walls.
Electromagnetically induced transparency (EIT) in this medium allows for 50%
transmission in a medium with initial OD >70 and for slow pulse propagation
with large delay-bandwidth products. In the high-OD regime, we observe
high-contrast spectrum oscillations due to efficient four-wave mixing.Comment: 4 pages, 4 figures. V2: modified title, abstract, introduction,
conclusion; added references; improved theoretical fit in figure 3(b);
shortened slow light theory description; clarified simplicity of apparatus.
Final version as published in Phys. Rev.
- …
