8 research outputs found
Monte Carlo calculation of organ and effective doses due to photon and neutron point sources and typical X-ray examinations: Results of an international intercomparison exercise
This paper summarizes the results of an intercomparison on the use of the ICRP Reference Computational Phantoms with radiation transport codes, which was organized by EURADOS working group 6. Three exercises are described: exposure to an anterior-posterior (AP) photon point source, exposure to an AP neutron point source, and exposure to two typical medical X-ray examinations. The three exercises received 17, 8 and 8 solutions, respectively. Participants originated from fifteen different countries, and used a wide range of Monte Carlo codes. Due to difficulties in defining the precise source location unambiguously in the exercise description, agreement to within ∼10% of the reference solution was considered satisfactory for a given participant's results. Although some participants provided initial solutions in good agreement with the reference solutions, differences of several tens of percent, or even several orders of magnitude, were exhibited for many of the others. Following feedback and suggestions from the organizers, revised solutions were submitted by some of the participants for the photon exercises; in general, agreement was improved. The overall observations from these three intercomparison exercises are summarized and discussed
Monte Carlo calculation of organ dose coefficients for internal dosimetry: Results of an international intercomparison exercise.
EURADOS Working Group 6 has organized an intercomparison exercise on the use of the ICRP Reference Computational Phantoms with radiation transport codes. This paper summarizes the results of a specific task from the intercomparison exercise modelling internal radiation sources. The quantities to be calculated were absorbed fractions and specific absorbed fractions for monoenergetic photon and electron sources as well as S-values for two radionuclides in four source organs. Twelve participants from eleven countries participated in this specific task using the Monte Carlo radiation transport codes FLUKA, Geant4, the MCNP code family, PenEasy, TRIPOLI-4 and VMC. Although some participants provided initial solutions in good agreement with the master solution evaluated by the organizers, differences of factors or even orders of magnitude were also found. Following feedback from the organizer, most participants submitted revised solutions that were mostly in better agreement with the master solution, although this was not always the case. Some initial and revised results are discussed in detail in this paper, and the reasons of mistakes are described as far as they were revealed by the participants. A full account of all results is presented in specific annexes as supplemental material
Monte Carlo calculation of organ dose coefficients for internal dosimetry: Results of an international intercomparison exercise
EURADOS Working Group 6 has organized an intercomparison exercise on the use of the ICRP Reference Computational Phantoms with radiation transport codes. This paper summarizes the results of a specific task from the intercomparison exercise modelling internal radiation sources. The quantities to be calculated were absorbed fractions and specific absorbed fractions for monoenergetic photon and electron sources as well as S-values for two radionuclides in four source organs. Twelve participants from eleven countries participated in this specific task using the Monte Carlo radiation transport codes FLUKA, Geant4, the MCNP code family, PenEasy, TRIPOLI-4 and VMC. Although some participants provided initial solutions in good agreement with the master solution evaluated by the organizers, differences of factors or even orders of magnitude were also found. Following feedback from the organizer, most participants submitted revised solutions that were mostly in better agreement with the master solution, although this was not always the case. Some initial and revised results are discussed in detail in this paper, and the reasons of mistakes are described as far as they were revealed by the participants. A full account of all results is presented in specific annexes as supplemental material
Actitudes hacia la interrupción voluntaria del embarazo en jóvenes mexicanos, y su opinión acerca del aborto inseguro como problema de salud pública
Monte Carlo modelling for the in vivo lung monitoring of enriched uranium: Results of an international comparison
In order to assess the reliability of Monte Carlo (MC)-based numerical calibration of in vivo counting systems the EURADOS network supported a comparison of MC simulation of well-defined experiments. This action also provided training for the use of voxel phantoms. In vivo measurements of enriched uranium in a thoracic phantom have been carried out and the needed information to simulate these measurements was distributed to 17 participants. About half of the participants managed to simulate the measured counting efficiency without support from the organisers. Following additional support all participants managed to simulate the counting efficiencies within a typical agreement of ±5% with experiment. © 2012 Elsevier Ltd. All rights reserved
