1,229 research outputs found
Ion condensation on charged patterned surfaces
We study ion condensation onto a patterned surface of alternating charges.
The competition between self-energy and ion-surface interactions leads to the
formation of ionic crystalline structures at low temperatures. We consider
different arrangements of underlying ionic crystals, including single ion
adsorption, as well as the formation of dipoles at the interface between
charged domains. Molecular dynamic simulation illustrates existence of single
and mixed phases. Our results contribute to understanding pattern recognition,
and molecular separation and synthesis near patterned surfaces.Comment: 3 figure
Radius of a Photon Beam with Orbital Angular Momentum
We analyze the transverse structure of the Gouy phase shift in light beams
carrying orbital angular momentum and show that the Gouy radius
characterizing the transverse structure grows as with the
nodal number and photon angular momentum number . The Gouy radius is
shown to be closely related to the root-mean-square radius of the beam, and the
divergence of the radius away from the focal plane is determined. Finally, we
analyze the rotation of the Poynting vector in the context of the Gouy radius.Comment: 11 page
Discrete aqueous solvent effects and possible attractive forces
We study discrete solvent effects on the interaction of two parallel charged
surfaces in ionic aqueous solution. These effects are taken into account by
adding a bilinear non-local term to the free energy of Poisson-Boltzmann
theory. We study numerically the density profile of ions between the two
plates, and the resulting inter-plate pressure. At large plate separations the
two plates are decoupled and the ion distribution can be characterized by an
effective Poisson-Boltzmann charge that is smaller than the nominal charge. The
pressure is thus reduced relative to Poisson-Boltzmann predictions. At plate
separations below ~2 nm the pressure is modified considerably, due to the
solvent mediated short-range attraction between ions in the the system. For
high surface charges this contribution can overcome the mean-field repulsion
giving rise to a net attraction between the plates.Comment: 12 figures in 16 files. 19 pages. Submitted to J. Chem. Phys., July
200
The Role of the Gouy Phase in the Coherent Phase Control of the Photoionization and Photodissociation of Vinyl Chloride
We demonstrate theoretically and experimentally that the Gouy phase of a
focused laser beam may be used to control the photo-induced reactions of a
polyatomic molecule. Quantum mechanical interference between one- and
three-photon excitation of vinyl chloride produces a small phase lag between
the dissociation and ionization channels on the axis of the molecular beam.
Away from the axis, the Gouy phase introduces a much larger phase lag that
agrees quantitatively with theory without any adjustable parameters.Comment: 4 pages, 4 figure
Theory and simulations of rigid polyelectrolytes
We present theoretical and numerical studies on stiff, linear
polyelectrolytes within the framework of the cell model. We first review
analytical results obtained on a mean-field Poisson-Boltzmann level, and then
use molecular dynamics simulations to show, under which circumstances these
fail quantitatively and qualitatively. For the hexagonally packed nematic phase
of the polyelectrolytes we compute the osmotic coefficient as a function of
density. In the presence of multivalent counterions it can become negative,
leading to effective attractions. We show that this results from a reduced
contribution of the virial part to the pressure. We compute the osmotic
coefficient and ionic distribution functions from Poisson-Boltzmann theory with
and without a recently proposed correlation correction, and also simulation
results for the case of poly(para-phenylene) and compare it to recently
obtained experimental data on this stiff polyelectrolyte. We also investigate
ion-ion correlations in the strong coupling regime, and compare them to
predictions of the recently advocated Wigner crystal theories.Comment: 32 pages, 15 figures, proceedings of the ASTATPHYS-MEX-2001, to be
published in Mol. Phy
Description beyond the mean field approximation of an electrolyte confined between two planar metallic electrodes
We study an electrolyte confined in a slab of width composed of two
grounded metallic parallel electrodes. We develop a description of this system
in a low coupling regime beyond the mean field (Poisson--Boltzmann)
approximation. There are two ways to model the metallic boundaries: as ideal
conductors in which the electric potential is zero and it does not fluctuate,
or as good conductors in which the average electric potential is zero but the
thermal fluctuations of the potential are not zero. This latter model is more
realistic. For the ideal conductor model we find that the disjoining pressure
is positive behaves as for large separations with a prefactor that is
universal, i.e. independent of the microscopic constitution of the system. For
the good conductor boundaries the disjoining pressure is negative and it has an
exponential decay for large . We also compute the density and electric
potential profiles inside the electrolyte. These are the same in both models.
If the electrolyte is charge asymmetric we find that the system is not locally
neutral and that a non-zero potential difference builds up between any
electrode and the interior of the system although both electrodes are grounded.Comment: 16 pages, 5 figures, added a new appendix B and a discussion on ideal
conductors vs. good conductor
Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry
We report on a novel experiment to generate non-classical atomic states via
quantum non-demolition (QND) measurements on cold atomic samples prepared in a
high finesse ring cavity. The heterodyne technique developed for the QND
detection exhibits an optical shot-noise limited behavior for local oscillator
optical power of a few hundred \muW, and a detection bandwidth of several GHz.
This detection tool is used in single pass to follow non destructively the
internal state evolution of an atomic sample when subjected to Rabi
oscillations or a spin-echo interferometric sequence.Comment: 23 page
X-ray Near Field Speckle: Implementation and Critical Analysis
We have implemented the newly-introduced, coherence-based technique of x-ray
near-field speckle (XNFS) at 8-ID-I at the Advanced Photon Source. In the near
field regime of high-brilliance synchrotron x-rays scattered from a sample of
interest, it turns out, that, when the scattered radiation and the main beam
both impinge upon an x-ray area detector, the measured intensity shows
low-contrast speckles, resulting from interference between the incident and
scattered beams. We built a micrometer-resolution XNFS detector with a high
numerical aperture microscope objective and demonstrate its capability for
studying static structures and dynamics at longer length scales than
traditional far field x-ray scattering techniques. Specifically, we
characterized the structure and dynamics of dilute silica and polystyrene
colloidal samples. Our study reveals certain limitations of the XNFS technique,
which we discuss.Comment: 53 pages, 16 figure
Incorporation of excluded volume correlations into Poisson-Boltzmann theory
We investigate the effect of excluded volume interactions on the electrolyte
distribution around a charged macroion. First, we introduce a criterion for
determining when hard-core effects should be taken into account beyond standard
mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several
commonly proposed local density functional approaches for excluded volume
interactions cannot be used for this purpose. Instead, we employ a non-local
excess free energy by using a simple constant weight approach. We compare the
ion distribution and osmotic pressure predicted by this theory with Monte Carlo
simulations. They agree very well for weakly developed correlations and give
the correct layering effect for stronger ones. In all investigated cases our
simple weighted density theory yields more realistic results than the standard
PB approach, whereas all local density theories do not improve on the PB
density profiles but on the contrary, deviate even more from the simulation
results.Comment: 23 pages, 7 figures, 1 tabl
CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes.
CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells in patients with chronic lymphocytic leukemia (CLL). Important functional properties are associated with CD5 expression in B cells, including signal transducer and activator of transcription 3 activation, IL-10 production and the promotion of B-lymphocyte survival and transformation. However, the pathway(s) by which CD5 influences the biology of B cells and its dependence on B-cell receptor (BCR) co-signaling remain unknown. In this study, we show that CD5 expression activates a number of important signaling pathways, including Erk1/2, leading to IL-10 production through a novel pathway independent of BCR engagement. This pathway is dependent on extracellular calcium (Ca2+) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) protein. We also show that Erk1/2 activation in a subgroup of CLL patients is associated with TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 production. These findings provide new insights into the role of CD5 in B-cell biology in health and disease and could pave the way for new treatment strategies for patients with B-CLL
- …
