11,578 research outputs found
THAT'S WHAT MAKES THE DIFFERENCE TODAY: AN INTERNATIONAL ANALYSIS OF THE DETERMINANTS OF DISCRIMINATION
Data from the ISSP are used to evaluate Oaxaca decompositions of the gender wage gap for a group of 38 countries. The component attributable to different 'prices' in the gender-specific wage equations is then modelled as a function of macroeconomic variables. It is established that increased development and openness lead to reductions in discrimination.
Instrumentation for Millimeter-wave Magnetoelectrodynamic Investigations of Low-Dimensional Conductors and Superconductors
We describe instrumentation for conducting high sensitivity millimeter-wave
cavity perturbation measurements over a broad frequency range (40-200 GHz) and
in the presence of strong magnetic fields (up to 33 tesla). A Millimeter-wave
Vector Network Analyzer (MVNA) acts as a continuously tunable microwave source
and phase sensitive detector (8-350 GHz), enabling simultaneous measurements of
the complex cavity parameters (resonance frequency and Q-value) at a rapid
repetition rate (approx. 10 kHz). We discuss the principal of operation of the
MVNA and the construction of a probe for coupling the MVNA to various
cylindrical resonator configurations which can easily be inserted into a high
field magnet cryostat. We also present several experimental results which
demonstrate the potential of the instrument for studies of low-dimensional
conducting systems.Comment: 20 pages including fig
Determination of the Gyrotropic Characteristics of Hexaferrite Ceramics From 75 to 600 GHz
(c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
A Learning Approach to Optical Tomography
We describe a method for imaging 3D objects in a tomographic configuration
implemented by training an artificial neural network to reproduce the complex
amplitude of the experimentally measured scattered light. The network is
designed such that the voxel values of the refractive index of the 3D object
are the variables that are adapted during the training process. We demonstrate
the method experimentally by forming images of the 3D refractive index
distribution of cells
Avaliação da atividade bactericida por zona de inibição em gel e filmes de derivados quaternários de quitosana.
A rotating cavity for high-field angle-dependent microwave spectroscopy of low-dimensional conductors and magnets
The cavity perturbation technique is an extremely powerful method for
measuring the electrodynamic response of a material in the millimeter- and
sub-millimeter spectral range (10 GHz to 1 THz), particularly in the case of
high-field/frequency magnetic resonance spectroscopy. However, the application
of such techniques within the limited space of a high-field magnet presents
significant technical challenges. We describe a 7.62 mm x 7.62 mm (diameter x
length) rotating cylindrical cavity which overcomes these problems.Comment: 11 pages including 8 figure
A new look at the cosmic ray positron fraction
The positron fraction in cosmic rays was found to be a steadily increasing in
function of energy, above 10 GeV. This behaviour contradicts standard
astrophysical mechanisms, in which positrons are secondary particles, produced
in the interactions of primary cosmic rays during the propagation in the
interstellar medium. The observed anomaly in the positron fraction triggered a
lot of excitement, as it could be interpreted as an indirect signature of the
presence of dark matter species in the Galaxy. Alternatively, it could be
produced by nearby astrophysical sources, such as pulsars. Both hypotheses are
probed in this work in light of the latest AMS-02 positron fraction
measurements. The transport of the primary and secondary positrons in the
Galaxy is described using a semi-analytic two-zone model. MicrOMEGAs is used to
model the positron flux generated by dark matter species. The description of
the positron fraction from astrophysical sources is based on the pulsar
observations included in the ATNF catalogue. We find that the mass of the
favoured dark matter candidates is always larger than 500 GeV. The only dark
matter species that fulfils the numerous gamma ray and cosmic microwave
background bounds is a particle annihilating into four leptons through a light
scalar or vector mediator, with a mixture of tau (75%) and electron (25%)
channels, and a mass between 0.5 and 1 TeV. The positron anomaly can also be
explained by a single astrophysical source and a list of five pulsars from the
ATNF catalogue is given. Those results are obtained with the cosmic ray
transport parameters that best fit the B/C ratio. Uncertainties in the
propagation parameters turn out to be very significant. In the WIMP
annihilation cross section to mass plane for instance, they overshadow the
error contours derived from the positron data.Comment: 20 pages, 16 figures, accepted for publication in A&A, corresponds to
published versio
- …
