10,377 research outputs found

    Effects of 2, 4, 5-Trichlorophenoxyacetic Acid on Swiss-Webster Mice

    Get PDF
    Pure and Commercial samples of the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5- T) were tested on Swiss-Webster mice for: (1) interruption of the estrus cycle and (2) teratogenic effects. The estrus cycle of mice administered Commercial 2,4,5-T was interrupted in 42.9% of the animals and in 12.5% of the animals given Pure 2,4,5-T. No fetal abnormalities were found in pregnant animals treated with Commercial or Pure 2,4,5-T. Fetal resorptions were found in both treatment groups. Treatment with Pure 2,4,5-T produced a significant decrease in viable fetal weight and increased fetal deaths

    In Situ Nanomechanical Measurements of Interfacial Strength in Membrane-Embedded Chemically Functionalized Si Microwires for Flexible Solar Cells

    Get PDF
    Arrays of vertically aligned Si microwires embedded in polydimethylsiloxane (PDMS) have emerged as a promising candidate for use in solar energy conversion devices. Such structures are lightweight and concurrently demonstrate competitive efficiency and mechanical flexibility. To ensure reliable functioning under bending and flexing, strong interfacial adhesion between the nanowire and the matrix is needed. In situ uniaxial tensile tests of individual, chemically functionalized, Si microwires embedded in a compliant PDMS matrix reveal that chemical functionality on Si microwire surfaces is directly correlated with interfacial adhesion strength. Chemical functionalization can therefore serve as an effective methodology for accessing a wide range of interfacial adhesion between the rigid constituents and the soft polymer matrix; the adhesion can be quantified by measuring the mechanical strength of such systems

    Communication strategies used by teachers at a school for the deaf

    Get PDF
    This paper describes alternate approaches to communication with hearing-impaired children which are used by classroom teachers at a school for the deaf

    Mechanical compatibility of sol–gel annealing with titanium for orthopaedic prostheses

    Get PDF
    Sol–gel processing is an attractive method for large-scale surface coating due to its facile and inexpensive preparation, even with the inclusion of precision nanotopographies. These are desirable traits for metal orthopaedic prostheses where ceramic coatings are known to be osteoinductive and the effects may be amplified through nanotexturing. However there are a few concerns associated with the application of sol–gel technology to orthopaedics. Primarily, the annealing stage required to transform the sol–gel into a ceramic may compromise the physical integrity of the underlying metal. Secondly, loose particles on medical implants can be carcinogenic and cause inflammation so the coating needs to be strongly bonded to the implant. These concerns are addressed in this paper. Titanium, the dominant material for orthopaedics at present, is examined before and after sol–gel processing for changes in hardness and flexural modulus. Wear resistance, bending and pull tests are also performed to evaluate the ceramic coating. The findings suggest that sol–gel coatings will be compatible with titanium implants for an optimum temperature of 500 °C

    Dynamical Monte Carlo Study of Equilibrium Polymers : Static Properties

    Full text link
    We report results of extensive Dynamical Monte Carlo investigations on self-assembled Equilibrium Polymers (EP) without loops in good solvent. (This is thought to provide a good model of giant surfactant micelles.) Using a novel algorithm we are able to describe efficiently both static and dynamic properties of systems in which the mean chain length \Lav is effectively comparable to that of laboratory experiments (up to 5000 monomers, even at high polymer densities). We sample up to scission energies of E/kBT=15E/k_BT=15 over nearly three orders of magnitude in monomer density ϕ\phi, and present a detailed crossover study ranging from swollen EP chains in the dilute regime up to dense molten systems. Confirming recent theoretical predictions, the mean-chain length is found to scale as \Lav \propto \phi^\alpha \exp(\delta E) where the exponents approach αd=δd=1/(1+γ)0.46\alpha_d=\delta_d=1/(1+\gamma) \approx 0.46 and αs=1/2[1+(γ1)/(νd1)]0.6,δs=1/2\alpha_s = 1/2 [1+(\gamma-1)/(\nu d -1)] \approx 0.6, \delta_s=1/2 in the dilute and semidilute limits respectively. The chain length distribution is qualitatively well described in the dilute limit by the Schulz-Zimm distribution \cN(s)\approx s^{\gamma-1} \exp(-s) where the scaling variable is s=\gamma L/\Lav. The very large size of these simulations allows also an accurate determination of the self-avoiding walk susceptibility exponent γ1.165±0.01\gamma \approx 1.165 \pm 0.01. ....... Finite-size effects are discussed in detail.Comment: 15 pages, 14 figures, LATE

    Formation and Equilibrium Properties of Living Polymer Brushes

    Full text link
    Polydisperse brushes obtained by reversible radical chain polymerization reaction onto a solid substrate with surface-attached initiators, are studied by means of an off-lattice Monte Carlo algorithm of living polymers (LP). Various properties of such brushes, like the average chain length and the conformational orientation of the polymers, or the force exerted by the brush on the opposite container wall, reveal power-law dependence on the relevant parameters. The observed molecular weight distribution (MWD) of the grafted LP decays much more slowly than the corresponding LP bulk system due to the gradient of the monomer density within the dense pseudo-brush which favors longer chains. Both MWD and the density profiles of grafted polymers and chain ends are well fitted by effective power laws whereby the different exponents turn out to be mutually self-consistent for a pseudo-brush in the strong-stretching regime.Comment: 33 pages, 11 figues, J.Chem. Phys. accepted Oct. 199

    Chiral molecular films as electron polarizers and polarization modulators

    Full text link
    Recent experiments on electron scattering through molecular films have shown that chiral molecules can be efficient sources of polarized electrons even in the absence of heavy nuclei as source of a strong spin-orbit interaction. We show that self-assembled monolayers (SAMs) of chiral molecules are strong electron polarizers due to the high density effect of the monolayers and explicitly compute the scattering amplitude off a helical molecular model of carbon atoms. Longitudinal polarization is shown to be the signature of chiral scattering. For elastic scattering, we find that at least double scattering events must take place for longitudinal polarization to arise. We predict energy windows for strong polarization, determined by the energy dependences of spin-orbit strength and multiple scattering probability. An incoherent mechanism for polarization amplification is proposed, that increases the polarization linearly with the number of helix turns, consistent with recent experiments on DNA SAMs.Comment: 5 Pages, 4 figure

    Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification

    Get PDF
    In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods

    Predicting intrapartum fetal compromise using the fetal cerebro-umbilical ratio

    Get PDF
    Introduction: The aim of this study was to explore the association between the cerebro-umbilical ratio measured at 35-37 weeks and intrapartum fetal compromise

    Electron transport properties of sub-3-nm diameter copper nanowires

    Get PDF
    Density functional theory and density functional tight-binding are applied to model electron transport in copper nanowires of approximately 1 nm and 3 nm diameters with varying crystal orientation and surface termination. The copper nanowires studied are found to be metallic irrespective of diameter, crystal orientation and/or surface termination. Electron transmission is highly dependent on crystal orientation and surface termination. Nanowires oriented along the [110] crystallographic axis consistently exhibit the highest electron transmission while surface oxidized nanowires show significantly reduced electron transmission compared to unterminated nanowires. Transmission per unit area is calculated in each case, for a given crystal orientation we find that this value decreases with diameter for unterminated nanowires but is largely unaffected by diameter in surface oxidized nanowires for the size regime considered. Transmission pathway plots show that transmission is larger at the surface of unterminated nanowires than inside the nanowire and that transmission at the nanowire surface is significantly reduced by surface oxidation. Finally, we present a simple model which explains the transport per unit area dependence on diameter based on transmission pathways results
    corecore