10,377 research outputs found
Effects of 2, 4, 5-Trichlorophenoxyacetic Acid on Swiss-Webster Mice
Pure and Commercial samples of the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5- T) were tested on Swiss-Webster mice for: (1) interruption of the estrus cycle and (2) teratogenic effects. The estrus cycle of mice administered Commercial 2,4,5-T was interrupted in 42.9% of the animals and in 12.5% of the animals given Pure 2,4,5-T. No fetal abnormalities were found in pregnant animals treated with Commercial or Pure 2,4,5-T. Fetal resorptions were found in both treatment groups. Treatment with Pure 2,4,5-T produced a significant decrease in viable fetal weight and increased fetal deaths
In Situ Nanomechanical Measurements of Interfacial Strength in Membrane-Embedded Chemically Functionalized Si Microwires for Flexible Solar Cells
Arrays of vertically aligned Si microwires embedded in polydimethylsiloxane (PDMS) have emerged as a promising candidate for use in solar energy conversion devices. Such structures are lightweight and concurrently demonstrate competitive efficiency and mechanical flexibility. To ensure reliable functioning under bending and flexing, strong interfacial adhesion between the nanowire and the matrix is needed. In situ uniaxial tensile tests of individual, chemically functionalized, Si microwires embedded in a compliant PDMS matrix reveal that chemical functionality on Si microwire surfaces is directly correlated with interfacial adhesion strength. Chemical functionalization can therefore serve as an effective methodology for accessing a wide range of interfacial adhesion between the rigid constituents and the soft polymer matrix; the adhesion can be quantified by measuring the mechanical strength of such systems
Communication strategies used by teachers at a school for the deaf
This paper describes alternate approaches to communication with hearing-impaired children which are used by classroom teachers at a school for the deaf
Mechanical compatibility of sol–gel annealing with titanium for orthopaedic prostheses
Sol–gel processing is an attractive method for large-scale surface coating due to its facile and inexpensive preparation, even with the inclusion of precision nanotopographies. These are desirable traits for metal orthopaedic prostheses where ceramic coatings are known to be osteoinductive and the effects may be amplified through nanotexturing. However there are a few concerns associated with the application of sol–gel technology to orthopaedics. Primarily, the annealing stage required to transform the sol–gel into a ceramic may compromise the physical integrity of the underlying metal. Secondly, loose particles on medical implants can be carcinogenic and cause inflammation so the coating needs to be strongly bonded to the implant. These concerns are addressed in this paper. Titanium, the dominant material for orthopaedics at present, is examined before and after sol–gel processing for changes in hardness and flexural modulus. Wear resistance, bending and pull tests are also performed to evaluate the ceramic coating. The findings suggest that sol–gel coatings will be compatible with titanium implants for an optimum temperature of 500 °C
Dynamical Monte Carlo Study of Equilibrium Polymers : Static Properties
We report results of extensive Dynamical Monte Carlo investigations on
self-assembled Equilibrium Polymers (EP) without loops in good solvent. (This
is thought to provide a good model of giant surfactant micelles.) Using a novel
algorithm we are able to describe efficiently both static and dynamic
properties of systems in which the mean chain length \Lav is effectively
comparable to that of laboratory experiments (up to 5000 monomers, even at high
polymer densities). We sample up to scission energies of over
nearly three orders of magnitude in monomer density , and present a
detailed crossover study ranging from swollen EP chains in the dilute regime up
to dense molten systems. Confirming recent theoretical predictions, the
mean-chain length is found to scale as \Lav \propto \phi^\alpha \exp(\delta
E) where the exponents approach
and in the
dilute and semidilute limits respectively. The chain length distribution is
qualitatively well described in the dilute limit by the Schulz-Zimm
distribution \cN(s)\approx s^{\gamma-1} \exp(-s) where the scaling variable
is s=\gamma L/\Lav. The very large size of these simulations allows also an
accurate determination of the self-avoiding walk susceptibility exponent
. ....... Finite-size effects are discussed in
detail.Comment: 15 pages, 14 figures, LATE
Formation and Equilibrium Properties of Living Polymer Brushes
Polydisperse brushes obtained by reversible radical chain polymerization
reaction onto a solid substrate with surface-attached initiators, are studied
by means of an off-lattice Monte Carlo algorithm of living polymers (LP).
Various properties of such brushes, like the average chain length and the
conformational orientation of the polymers, or the force exerted by the brush
on the opposite container wall, reveal power-law dependence on the relevant
parameters. The observed molecular weight distribution (MWD) of the grafted LP
decays much more slowly than the corresponding LP bulk system due to the
gradient of the monomer density within the dense pseudo-brush which favors
longer chains. Both MWD and the density profiles of grafted polymers and chain
ends are well fitted by effective power laws whereby the different exponents
turn out to be mutually self-consistent for a pseudo-brush in the
strong-stretching regime.Comment: 33 pages, 11 figues, J.Chem. Phys. accepted Oct. 199
Chiral molecular films as electron polarizers and polarization modulators
Recent experiments on electron scattering through molecular films have shown
that chiral molecules can be efficient sources of polarized electrons even in
the absence of heavy nuclei as source of a strong spin-orbit interaction. We
show that self-assembled monolayers (SAMs) of chiral molecules are strong
electron polarizers due to the high density effect of the monolayers and
explicitly compute the scattering amplitude off a helical molecular model of
carbon atoms. Longitudinal polarization is shown to be the signature of chiral
scattering. For elastic scattering, we find that at least double scattering
events must take place for longitudinal polarization to arise. We predict
energy windows for strong polarization, determined by the energy dependences of
spin-orbit strength and multiple scattering probability. An incoherent
mechanism for polarization amplification is proposed, that increases the
polarization linearly with the number of helix turns, consistent with recent
experiments on DNA SAMs.Comment: 5 Pages, 4 figure
Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification
In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods
Predicting intrapartum fetal compromise using the fetal cerebro-umbilical ratio
Introduction: The aim of this study was to explore the association between the cerebro-umbilical ratio measured at 35-37 weeks and intrapartum fetal compromise
Electron transport properties of sub-3-nm diameter copper nanowires
Density functional theory and density functional tight-binding are applied to
model electron transport in copper nanowires of approximately 1 nm and 3 nm
diameters with varying crystal orientation and surface termination. The copper
nanowires studied are found to be metallic irrespective of diameter, crystal
orientation and/or surface termination. Electron transmission is highly
dependent on crystal orientation and surface termination. Nanowires oriented
along the [110] crystallographic axis consistently exhibit the highest electron
transmission while surface oxidized nanowires show significantly reduced
electron transmission compared to unterminated nanowires. Transmission per unit
area is calculated in each case, for a given crystal orientation we find that
this value decreases with diameter for unterminated nanowires but is largely
unaffected by diameter in surface oxidized nanowires for the size regime
considered. Transmission pathway plots show that transmission is larger at the
surface of unterminated nanowires than inside the nanowire and that
transmission at the nanowire surface is significantly reduced by surface
oxidation. Finally, we present a simple model which explains the transport per
unit area dependence on diameter based on transmission pathways results
- …
