514 research outputs found

    Development of a Combined Quanity and Quality Model for Optimal Groundwater Management

    Get PDF
    Presented is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. The MODCON modelling procedure uses linear goal programming, embedded linearized equations for flow and solute transport and a MOC simulation model. Assumed is 2D flow and solute transport and a dispersed conservative contaminant. The MODCON procedure develops steady groundwater extraction strategies that will satisfy future groundwater quality constraints while simultaneously causing future piezometric heads to be as close to current heads as possible. The procedure is applied to a 160 square mile area in southeastern Arkansas

    Capacitor-type micrometeoroid detectors

    Get PDF
    The metal oxide semiconductor (MOS) capacitor micrometeroid detector consists of a thin dielectric capacitor fabricated on a silicon wafer. In operation, the device is charged to a voltage level sufficiently near breakdown that micrometeoroid impacts will cause dielectric deformation or heating and subsequent arc-over at the point of impact. Each detector is capable of recording multiple impacts because of the self-healing characteristics of the device. Support instrumentation requirements consist of a voltage source and pulse counters that monitor the pulse of recharging current following every impact. An investigation has been conducted in which 0.5 to 5 micron diameter carbonized iron spheres traveling at velocities of 4 to 10 Km/sec were impacted on to detectors with either a dielectric thickness of 0.4 or 1.0 micron. This study demonstrated that an ion microprobe tuned to sufficiently high resolution can detect Fe remaining on the detector after the impact. Furthermore, it is also possible to resolve Fe ion images free of mass interferences from Si, for example, giving its spatial distribution after impact. Specifically this technique has shown that significant amounts of impacting particles remain in the crater and near it which can be analyzed for isotopic content. Further testing and calibration could lead to quantitive analysis. This study has shown that the capacitor type micrometeroid detector is capable of not only time and flux measurements but can also be used for isotopic analysis

    Disposal of Household Wastewater in Soils of High Stone Content (1981-1983)

    Get PDF
    Four experimental filter fields were constructed with built-in monitoring equipment in Nixa soils. These soils contain many chert fragments and a fragipan about 60 cm below the soil surface. The fragipan restricts downward movement of water and is the designlimitingfeature. The four filter fields were: 1. A standard filter field, 76 cm deep. The bottom of the trench was in the fragipan. 2. A modified standard filter field, 30 cm deep. The bottom of the trench was above the fragipan. 3. A modified pressure filter field, 40 cm deep. The bottom of the trench was above the fragipan. In addition, a pressure-distribution system was used to insure uniform distribution of effluent in the trench. Inadvertently, this field was installed in a different soil, and the results cannot be compared directly with the other three. 4. Another modified pressure filter field with the bottom of the trench only 6 cm below the soil surface. Observation of these systems confirms that placing filter fields higher in the soil above the hydraulically limiting horizon results in improved hydraulic performance. The presence of the fragipan amplified the adverse effects attributable to climatic stress. The seepage beds which are higher in the soil profile are able to handle the effluent load and climate load with less danger of surfacing

    Mechanoaccumulative elements of the mammalian actin cytoskeleton

    Get PDF
    To change shape, divide, form junctions, and migrate, cells reorganize their cytoskeletons in response to changing mechanical environments [1-4]. Actin cytoskeletal elements, including myosin II motors and actin crosslinkers, structurally remodel and activate signaling pathways in response to imposed stresses [5-9]. Recent studies demonstrate the importance of force-dependent structural rearrangement of α-catenin in adherens junctions [10] and vinculin's molecular clutch mechanism in focal adhesions [11]. However, the complete landscape of cytoskeletal mechanoresponsive proteins and the mechanisms by which these elements sense and respond to force remain to be elucidated. To find mechanosensitive elements in mammalian cells, we examined protein relocalization in response to controlled external stresses applied to individual cells. Here, we show that non-muscle myosin II, α-actinin, and filamin accumulate to mechanically stressed regions in cells from diverse lineages. Using reaction-diffusion models for force-sensitive binding, we successfully predicted which mammalian α-actinin and filamin paralogs would be mechanoaccumulative. Furthermore, a Goldilocks zone must exist for each protein where the actin-binding affinity must be optimal for accumulation. In addition, we leveraged genetic mutants to gain a molecular understanding of the mechanisms of α-actinin and filamin catch-bonding behavior. Two distinct modes of mechanoaccumulation can be observed: a fast, diffusion-based accumulation and a slower, myosin II-dependent cortical flow phase that acts on proteins with specific binding lifetimes. Finally, we uncovered cell-type and cell-cycle-stage-specific control of the mechanosensation of myosin IIB, but not myosin IIA or IIC. Overall, these mechanoaccumulative mechanisms drive the cell's response to physical perturbation during proper tissue development and disease

    High-resolution computed tomography reconstructions of invertebrate burrow systems

    Get PDF
    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤2,000 raw image slices aquarium−1, isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture

    OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence

    Get PDF
    Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Spaceborne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the robustness of such a relationship across more biomes. Our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics

    Development of a combined quantity and quality model for optimal unsteady groundwater management

    Get PDF
    Presented is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. The MODCON modelling procedure uses linear goal programming, embedded linearized equations for flow and solute transport and a MOC simulation model. Assumed is 20 flow and solute transport and a dispersed conservative contaminant. The MODCON procedure develops steady groundwater extraction strategies that will satisfy future groundwater quality constraints while simultaneously causing future piezometric heads to be as close to current heads as possible. The procedure is applied to a 160 square mile area in southeastern Arkansas

    Development of linear water quality constraints for optimal groundwater management

    Get PDF
    Proposed is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. . MODCON procedure uses linear goal programming. embedded linearized equations for flow and solute transport. and MOC simulation model. Assumed is 20 flow and solute transport. and a dispersed conservative contaminant
    corecore