2,930 research outputs found
Competition between Spiral-Defect Chaos and Rolls in Rayleigh-Benard Convection
We present experimental results for pattern formation in Rayleigh-Benard
convection of a fluid with a Prandtl number, Pr~ 4. We find that the
spiral-defect-chaos (SDC) attractor which exists for Pr~1 has become unstable.
Gradually increasing the temperature difference from below to well above its
critical value no longer leads to SDC. A sudden jump of temperature difference
from below to above onset causes convection to grow from thermal fluctuations
and does yield SDC. However, the SDC is a transient; it coarsens and forms a
single cell-filling spiral which then drifts toward the cell wall and
disappears.Comment: 9 pages(RevTeX), 5 jpg figures, To appear as Rapid Communication in
PR
Heat transport in turbulent Rayleigh-Benard convection: Effect of finite top- and bottom-plate conductivity
We describe three apparatus, known as the large, medium, and small apparatus,
used for high-precision measurements of the Nusselt number N as a function of
the Rayleigh number R for cylindrical samples of fluid and present results
illustrating the influence of the finite conductivity of the top and bottom
plates on the heat transport in the fluid. We used water samples at a mean
temperature of 40 degrees C (Prandtl number sigma = 4.4). The samples in the
large apparatus had a diameter D of 49.69 cm and heights L = 116.33, 74.42,
50.61, and 16.52 cm. For the medium apparatus we had D = 24.81 cm, and L =
90.20 and 24.76 cm. The small apparatus contained a sample with D = 9.21 cm,
and L = 9.52 cm. For each aspect ratio Gamma = D/L the data covered a range of
a little over a decade of R. The maximum R = 10^12 with Nusselt numbers N = 600
was reached for Gamma = 0.43. Measurements were made with both Aluminum and
Copper top and bottom plates of nominally identical size and shape. For the
large and medium apparatus the results with Aluminum plates fall below those
obtained with Copper plates, thus confirming qualitatively the prediction by
Verzicco that plates of finite conductivity diminish the heat transport in the
fluid. The Nusselt number N_infinity for plates with infinite conductivity was
estimated by fitting simultaneously Aluminum- and Copper-plate data sets to an
effective powerlaw for N_infinity multiplied by a correction factor f(X) = 1 -
exp[-(aX)^b] that depends on the ratio X of the thermal resistance of the fluid
to that of the plates as suggested by Verzicco. Within their uncertainties the
parameters a and b were independent of Gamma for the large apparatus and showed
a small Gamma-dependence for the medium apparatus. The correction was larger
for the large, smaller for the medium, and negligible for the small apparatus.Comment: 35 pages, 11 figures. Under consideration for publication in Phys. of
Fluid
Extensive Scaling and Nonuniformity of the Karhunen-Lo\`eve Decomposition for the Spiral-Defect Chaos State
By analyzing large-aspect-ratio spiral-defect-chaos (SDC) convection images,
we show that the Karhunen-Lo\`eve decomposition (KLD) scales extensively for
subsystem-sizes larger than 4d (d is the fluid depth), which strongly suggests
that SDC is extensively chaotic. From this extensive scaling, the intensive
length \xi_KLD is computed and found to have a different dependence on the
Rayleigh number than the two-point correlation length \xi_2. Local computations
of \xi_KLD reveal a substantial spatial nonuniformity of SDC that extends over
radii 18d< r < 45d in a \Gamma=109 aspect-ratio cell.Comment: 10 pages single-spaced (total), 3 figues, 2 table
Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection
Experiments and simulations from a variety of sample sizes indicated that the
centrifugal force significantly affects rotating Rayleigh-B\'enard
convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state
consisting of domain chaos close to the sample center, surrounded by an annulus
of nearly-stationary nearly-radial rolls populated by occasional defects
reminiscent of undulation chaos. Although the Coriolis force is responsible for
domain chaos, by comparing experiment and simulation we show that the
centrifugal force is responsible for the radial rolls. Furthermore, simulations
of the Boussinesq equations for smaller aspect ratios neglecting the
centrifugal force yielded a domain precession-frequency
with as predicted by the amplitude-equation model for domain
chaos, but contradicted by previous experiment. Additionally the simulations
gave a domain size that was larger than in the experiment. When the centrifugal
force was included in the simulation, and the domain size closely agreed
with experiment.Comment: 8 pages, 11 figure
Metabolic response of human osteoarthritic cartilage to biochemically characterized collagen hydrolysates
The most frequent disease of the locomotor system is osteoarthritis (OA), which, as a chronic joint disease, might benefit more from nutrition than acute illnesses. Collagen hydrolysates (CHs) are peptidic mixtures that are often used as nutraceuticals for OA. Three CHs were characterized biochemically and pharmacologically. Our biophysical (MALDI-TOF-MS, NMR, AFM) and fluorescence assays revealed marked differences between CHs of fish (Peptan® F 5000, Peptan® F 2000) and porcine (Mobiforte®) origin with respect to the total number of peptides and common peptides between them. Using a novel dual radiolabeling procedure, no CH modulated collagen biosynthesis in human knee cartilage explants. Peptan® F 2000 enhanced the activities of the aggrecanase ADMATS4 and ADMATS5 in vitro without loss of proteoglycan from cartilage explants; the opposite effect was observed with Mobiforte®. Interleukin (IL)-6, matrix metalloproteinase (MMP)-1, -3 and -13 levels were elevated in explants that were treated with Mobiforte® and Peptan® F 5000, but not with Peptan® F 2000. In conclusion, the heterogeneous peptide composition and disparate pharmacological effects between CHs suggest that the effect of a CH preparation cannot be extrapolated to other formulations. Thus, the declaration of a CH as a safe and effective nutraceutical requires a thorough examination of its pleiotropic effects
Confinement of the Sun's interior magnetic field: some exact boundary-layer solutions
High-latitude laminar confinement of the Sun's interior magnetic field is
shown to be possible, as originally proposed by Gough and McIntyre (1998) but
contrary to a recent claim by Brun and Zahn (A&A 2006). Mean downwelling as
weak as 2x10^-6cm/s -- gyroscopically pumped by turbulent stresses in the
overlying convection zone and/or tachocline -- can hold the field in
advective-diffusive balance within a confinement layer of thickness scale ~
1.5Mm ~ 0.002 x (solar radius) while transmitting a retrograde torque to the
Ferraro-constrained interior. The confinement layer sits at the base of the
high-latitude tachocline, near the top of the radiative envelope and just above
the `tachopause' marking the top of the helium settling layer. A family of
exact, laminar, frictionless, axisymmetric confinement-layer solutions is
obtained for uniform downwelling in the limit of strong rotation and
stratification. A scale analysis shows that the flow is dynamically stable and
the assumption of laminar flow realistic. The solution remains valid for
downwelling values of the order of 10^-5cm/s but not much larger. This suggests
that the confinement layer may be unable to accept a much larger mass
throughput. Such a restriction would imply an upper limit on possible internal
field strengths, perhaps of the order of hundreds of gauss, and would have
implications also for ventilation and lithium burning.
The solutions have interesting chirality properties not mentioned in the
paper owing to space restrictions, but described at
http://www.atmos-dynamics.damtp.cam.ac.uk/people/mem/papers/SQBO/solarfigure.htmlComment: 6 pages, 3 figures, to appear in conference proceedings: Unsolved
Problems in Stellar Physic
Long GRBs from binary stars: runaway, Wolf-Rayet progenitors
The collapsar model for long gamma-ray bursts requires a rapidly rotating
Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating
Wolf-Rayet stars in massive close binaries through mass accretion and
consecutive quasi-chemically homogeneous evolution; the latter had previously
been shown to provide collapsars below a certain metallicity threshold for
single stars. The binary channel presented here may provide a means for massive
stars to obtain the high rotation rates required to evolve quasi-chemically
homogeneous and fulfill the collapsar scenario. Moreover, it suggests that a
possibly large fraction of long gamma-ray bursts occurs in runaway stars.Comment: To appear in the proceedings of the conference "Unsolved problems in
stellar physics" - Cambridge, July 200
- …
