955 research outputs found

    A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat

    Get PDF
    We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS) onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height. In addition, they permit to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated from 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover from 0 to 0.3. 42% of all clouds are high clouds, and about 42% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5) is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil) cirrus penetrate the stratosphere in the tropics

    Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements

    Full text link
    Metrological investigations of the quantum Hall effect (QHE) completed by transport measurements at low magnetic field are carried out in a-few-μm\mu\mathrm{m}-wide Hall bars made of monolayer (ML) or bilayer (BL) exfoliated graphene transferred on Si/SiO2\textrm{Si/SiO}_{2} substrate. From the charge carrier density dependence of the conductivity and from the measurement of the quantum corrections at low magnetic field, we deduce that transport properties in these devices are mainly governed by the Coulomb interaction of carriers with a large concentration of charged impurities. In the QHE regime, at high magnetic field and low temperature (T<1.3KT<1.3 \textrm{K}), the Hall resistance is measured by comparison with a GaAs based quantum resistance standard using a cryogenic current comparator. In the low dissipation limit, it is found quantized within 5 parts in 10710^{7} (one standard deviation, 1σ1 \sigma) at the expected rational fractions of the von Klitzing constant, respectively RK/2R_{\mathrm{K}}/2 and RK/4R_{\mathrm{K}}/4 in the ML and BL devices. These results constitute the most accurate QHE quantization tests to date in monolayer and bilayer exfoliated graphene. It turns out that a main limitation to the quantization accuracy, which is found well above the 10910^{-9} accuracy usually achieved in GaAs, is the low value of the QHE breakdown current being no more than 1μA1 \mu\mathrm{A}. The current dependence of the longitudinal conductivity investigated in the BL Hall bar shows that dissipation occurs through quasi-elastic inter-Landau level scattering, assisted by large local electric fields. We propose that charged impurities are responsible for an enhancement of such inter-Landau level transition rate and cause small breakdown currents.Comment: 14 pages, 9 figure

    Disparate effects of chronic and acute theophylline on cyclosporine A nephrotoxicity

    Get PDF
    Abstract : We previously developed a model of acute cyclosporine A (CsA)-induced vasomotor nephrotoxicity in rabbits. As exogenous adenosine infusion mimics the haemodynamic changes that characterize acute renal failure (ARF), we wanted to know whether adenosine was a mediator in this model and whether an adenosine receptor blocker could prevent the CsA-induced ARF. Group 1 were untreated controls. Group 2 received CsA (25 mg/kg per day) for 5 days. Renal function parameters were measured, showing ARF in all animals compared to controls. Theophylline (1 mg/kg i.v. bolus) was then administered and renal function was reassessed. Theophylline significantly reduced renal vascular resistance (-8%) and increased renal blood flow (RBF) (+20%), glomerular filtration rate (GFR) (+50%), filtration fraction (+24%) and diuresis (+73%), suggesting that adenosine was involved in the CsA-induced ARF. In group 3, theophylline (30 mg/kg per day) was given concomitantly with CsA for 5 days. GFR was normalized, but theophylline did not hinder the drop in RBF seen with CsA alone in group 2. Microscopy observation of the kidneys showed that chronic theophylline administration aggravated the morphological changes induced by CsA alone. We conclude that CsA administration for 5 days induced a vasomotor nephropathy with an adenosine-mediated afferent arteriolar constriction which cannot be prevented by concomitant theophylline administratio

    CLIC simulations from the start of the linac to the interaction point

    Get PDF
    Simulations for linear colliders are traditionally performed separately for the different sub-systems, like damping ring, bunch compressor, linac, and beam delivery. The beam properties are usually passed from one sub-system to the other via bunch charge, RMS transverse emittances, RMS bunch length, average energy and RMS energy spread. It is implicitly assumed that the detailed 6D correlations in the beam distribution are not relevant for the achievable luminosity. However, it has recently been shown that those correlations can have a strong effect on the beam-beam interaction. We present first results on CLIC simulations that integrate linac, beam delivery, and beam-beam interaction. These integrated simulations also allow a better simulation of time-dependent effects, like ground perturbations and interference between several beam-based feedbacks

    Status of the CLIC study on magnet stabilisation and time-dependent luminosity

    Get PDF
    The nanometer beam size at the CLIC interaction point imposes magnet vibration tolerances that range from 0.2 nm to a few nanometers. This is well below the floor vibra-tion usually observed. A test stand for magnet stability was set-up at CERN in the immediate neighborhood of roads, operating accelerators, manual shops, and regular office space. It was equipped with modern stabilization tech-nology. First results are presented, demonstrating signif-icant damping of floor vibration. CLIC quadrupoles have been stabilized vertically to an rms motion of (0.9 ± 0.1) n above 4 Hz, or (1.3 ± 0.2) nm with a nominal flow of cooling water. For the horizontal and longitudinal directions respectively, a CLIC quadrupole was stabilized to (0.4 ± 0.1) nm and (3.2 ± 0.4) nm

    Work Plans of the EUROTeV Technical Work Packages for 2005-2007

    Get PDF
    This report summarises the status of the work in the seven scientific Work Packages of EUROTeV as presented during the ILC-European Regional Meeting at Royal Holloway in June 2005. The purpose of the meeting was to monitor the progress and to contrast the developments inside EUROTeV with the worldwide developments of the GDE. The presentations of the entire meeting are available from http://www.pp.rhul.ac.uk/workshop/

    The CLIC Study of Magnet Stability and Time-dependent Luminosity Performance

    Get PDF
    The present parameters of the CLIC study require the collision of small emittance beams with a vertical spot size of 1 nm. The tolerances on vertical quadrupole vi-bration (above a few Hz) are as small as a few nm in the linac and most of the Final Focus. The final focusing quadrupole has a stability requirement of 4 nm in the horizontal and 0.2 nm in the vertical direction. Those tol-erances can only be achieved with the use of damped support structures for CLIC. A study has been set-up at CERN to explore the application of stabilization devices from specialized industry and to predict the time-dependent luminosity performance for CLIC. The results will guide the specification of required technological im-provements and will help to verify the feasibility of the present CLIC parameters

    A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws

    Full text link
    In this article we consider one-dimensional random systems of hyperbolic conservation laws. We first establish existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws which involve random initial data and random flux functions. Based on these results we present an a posteriori error analysis for a numerical approximation of the random entropy admissible solution. For the stochastic discretization, we consider a non-intrusive approach, the Stochastic Collocation method. The spatio-temporal discretization relies on the Runge--Kutta Discontinuous Galerkin method. We derive the a posteriori estimator using continuous reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. We conclude with various numerical examples investigating the scaling properties of the residuals and illustrating the efficiency of the proposed adaptive algorithm

    Studies of New Vector Resonances at the CLIC Multi-TeV e+e- Collider

    Get PDF
    Several models predict the existence of new vector resonances in the multi-TeV region, which can be produced in high energy e+e- collisions in the s-channel. In this paper we review the existing limits on the masses of these resonances from LEP/SLC and TEVATRON data and from atomic parity violation in some specific models. We study the potential of a multi-TeV e+e- collider, such as CLIC, for the determination of their properties and nature.Comment: 17 pages, 16 EPS figures, uses JHEP3.cl
    corecore