384 research outputs found

    Distributed negotiation in future power networks : rapid prototyping using multi-agent system

    Get PDF
    Technologies like multi-agent system (MAS) have the capability to deal with future power grid requirements such as frequency management and voltage control under a flexible, intelligent and active feature. Based on web of cells (WoC) architecture proposed by European Liaison on Electricity Committed Towards longer-term Research Activity Integrated Research Programme (ELECTRA IRP), a distributed MAS with distributed negotiation ability for future distributed control (including frequency management and voltage control) is proposed. Each cell is designed as an intelligent agent and is investigated in case studies with constraints, where each agent can only communicate with its neighbouring agents. The interaction logic among agents is according to the distributed negotiation algorithm under consideration by the authors. Simulation results indicate that the WoC architecture could negotiate resources in a distributed manner and achieve successful exchange of resources by coordinating distributed agents. Moreover, the prototype reported in this paper can be extended further for future grids' distributed control regimes. The option of MAS to be exploited for the support of the development and integration of novel power system concepts is explored

    Transitioning from centralized to distributed control : using SGAM to support a collaborative development of web of cells architecture for real time control

    Get PDF
    This paper shares some early experiences of developing the Web of Cells (WoC) concept for real time implementation supported by the Smart Grid Architecture Model (SGAM) reference framework. One of the use cases identified for the WoC concept is elaborated upon and is mapped to SGAM, providing one of the first examples where the SGAM reference framework has been used to develop a future distributed control architecture for real time implementation in power systems. Furthermore, this paper offers some insight into the key contributions that this approach can bring, such as a more effective interdisciplinary collaboration, better understanding of the control problem, and its implementation and validation

    Arthroscopic anterior talofibular ligament repair for lateral instability of the ankle

    No full text
    UNLABELLED: Although several arthroscopic procedures for lateral ligament instability of the ankle have been reported recently, it is difficult to augment the reconstruction by arthroscopically tightening the inferior extensor retinaculum. There is also concern that when using the inferior extensor retinaculum, this is not strictly an anatomical repair since its calcaneal attachment is different to that of the calcaneofibular ligament. If a ligament repair is completed firmly, it is unnecessary to add argumentation with inferior extensor retinaculum. The authors describe a simplified technique, repair of the lateral ligament alone using a lasso-loop stitch, which avoids additionally tighten the inferior extensor retinaculum. In this paper, it is described an arthroscopic anterior talofibular ligament repair using lasso-loop stitch alone for lateral instability of the ankle that is likely safe for patients and minimal invasive. LEVEL OF EVIDENCE: Therapeutic study, Level V

    Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    Full text link
    New cross sections for the reaction epeηpep \to e'\eta p are reported for total center of mass energy WW=1.5--2.3 GeV and invariant squared momentum transfer Q2Q^2=0.13--3.3 GeV2^2. This large kinematic range allows extraction of new information about response functions, photocouplings, and ηN\eta N coupling strengths of baryon resonances. A sharp structure is seen at WW\sim 1.7 GeV. The shape of the differential cross section is indicative of the presence of a PP-wave resonance that persists to high Q2Q^2. Improved values are derived for the photon coupling amplitude for the S11S_{11}(1535) resonance. The new data greatly expands the Q2Q^2 range covered and an interpretation of all data with a consistent parameterization is provided.Comment: 31 pages, 9 figure

    Electroproduction of ϕ(1020)\phi(1020) mesons at 1.4Q21.4\leq Q^2\leq GeV2^2 measured with the CLAS spectrometer

    Get PDF
    Electroproduction of exclusive ϕ\phi vector mesons has been studied with the CLAS detector in the kinematical range 1.4Q23.81.4\leq Q^2\leq 3.8 GeV2^{2}, 0.0t3.60.0\leq t^{\prime}\leq 3.6 GeV2^{2}, and 2.0W3.02.0\leq W\leq 3.0 GeV. The scaling exponent for the total cross section as 1/(Q2+Mϕ2)n1/(Q^2+M_{\phi}^2)^n was determined to be n=2.49±0.33n=2.49\pm 0.33. The slope of the four-momentum transfer tt' distribution is bϕ=0.98±0.17b_{\phi}=0.98 \pm 0.17 GeV2^{-2}. Under the assumption of s-channel helicity conservation (SCHC), we determine the ratio of longitudinal to transverse cross sections to be R=0.86±0.24R=0.86 \pm 0.24. A 2-gluon exchange model is able to reproduce the main features of the data.Comment: Phys Rev C, 15 pages, 18 figure

    A Precise Measurement of the Neutron Magnetic Form Factor GMn in the Few-GeV2 Region

    Get PDF
    The neutron elastic magnetic form factor GMn has been extracted from quasielastic electron scattering data on deuterium with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was achieved by employing a ratio technique in which many uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Neutrons were detected using the CLAS electromagnetic calorimeters and the time-of-flight scintillators. Data were taken at two different electron beam energies, allowing up to four semi-independent measurements of GMn to be made at each value of Q2. The dipole parameterization is found to provide a good description of the data over the measured Q2 range.Comment: 14 pages, 5 figures, revtex4, submitted to Physical Review Letters, Revised version has changes recommended by journal referee

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for p(e,eπ+)np(\vec{e},e'\pi^+)n in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} has been measured using the p(e,eπ+)np(\vec e,e'\pi^+)n reaction in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. No previous σLT\sigma_{LT^\prime} data exist for this reaction channel. The kinematically complete experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. A partial wave analysis of the data shows generally better agreement with recent phenomenological models of pion electroproduction compared to the previously measured π0p\pi^0 p channel. A fit to both π0p\pi^0 p and π+n\pi^+ n channels using a unitary isobar model suggests the unitarized Born terms provide a consistent description of the non-resonant background. The tt-channel pion pole term is important in the π0p\pi^0 p channel through a rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2: Updated referenc

    Onset of asymptotic scaling in deuteron photodisintegration

    Full text link
    We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the d(γ,p)nd(\gamma,p)n differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 3030^{\circ} and 150150^{\circ}. A possible signature for this transition is the onset of cross section s11s^{-11} scaling with the total energy squared, ss, at some proton transverse momentum, PTP_T. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Full text link
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer (Q2Q^2 = 0.27 -- 1.3 (GeV/c)2^2) and final hadronic state mass in the nucleon resonance region (WW = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15^{15}ND3_3) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry AA_{||} and the spin structure function g1dg_1^d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1dg_1^d and study its approach to both the deep inelastic limit at large Q2Q^2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q20Q^2 \to 0). We find that the first moment varies rapidly in the Q2Q^2 range of our experiment and crosses zero at Q2Q^2 between 0.5 and 0.8 (GeV/c)2^2, indicating the importance of the Δ\Delta resonance at these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys. Rev.

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure
    corecore