324 research outputs found
Nonlinear photoionization of transparent solids: a nonperturbative theory obeying selection rules
We provide a nonperturbative theory for photoionization of transparent
solids. By applying a particular steepest-descent method, we derive analytical
expressions for the photoionization rate within the two-band structure model,
which consistently account for the related to the parity of
the number of absorbed photons ( or ). We demonstrate the crucial
role of the interference of the transition amplitudes (saddle-points), which in
the semi-classical limit, can be interpreted in terms of interfering quantum
trajectories. Keldysh's foundational work of laser physics [Sov. Phys. JETP 20,
1307 (1965)] disregarded this interference, resulting in the violation of
. We provide an improved Keldysh photoionization theory and
show its excellent agreement with measurements for the frequency dependence of
the two-photon absorption and nonlinear refractive index coefficients in
dielectrics
Influence of surfactants on the structure of titanium oxide gels : experiments and simulations
We report here on experimental and numerical studies of the influence of
surfactants on mineral gel synthesis. The modification of the gel structure
when the ratios water-precursor and water-surfactant vary is brought to the
fore by fractal dimension measures. A property of {\em polydispersity of the
initial hydrolysis} is proposed to explain these results, and is successfuly
tested through numerical experiments of three dimensional chemically limited
aggregation.Comment: 12 pages, 4 Postscript figures, uses RevTe
HeMIS: Hetero-Modal Image Segmentation
We introduce a deep learning image segmentation framework that is extremely
robust to missing imaging modalities. Instead of attempting to impute or
synthesize missing data, the proposed approach learns, for each modality, an
embedding of the input image into a single latent vector space for which
arithmetic operations (such as taking the mean) are well defined. Points in
that space, which are averaged over modalities available at inference time, can
then be further processed to yield the desired segmentation. As such, any
combinatorial subset of available modalities can be provided as input, without
having to learn a combinatorial number of imputation models. Evaluated on two
neurological MRI datasets (brain tumors and MS lesions), the approach yields
state-of-the-art segmentation results when provided with all modalities;
moreover, its performance degrades remarkably gracefully when modalities are
removed, significantly more so than alternative mean-filling or other synthesis
approaches.Comment: Accepted as an oral presentation at MICCAI 201
Plasmon channels in the electronic relaxation of diamond under high-order harmonics femtosecond irradiation
We used high order harmonics of a femtosecond titanium-doped sapphire system
(pulse duration 25 fs) to realise Ultraviolet Photoelectron Spectroscopy (UPS)
measurements on diamond. The UPS spectra were measured for harmonics in the
range 13 to 27. We also made ab initio calculations of the electronic lifetime
of conduction electrons in the energy range produced in the UPS experiment.
Such calculations show that the lifetime suddenly diminishes when the
conduction electron energy reaches the plasmon energy, whereas the UPS spectra
show evidence in this range of a strong relaxation mechanism with an increased
production of low energy secondary electrons. We propose that in this case the
electronic relaxation proceeds in two steps : excitation of a plasmon by the
high energy electron, the latter decaying into individual electron-hole pairs,
as in the case of metals. This process is observed for the first time in an
insulator and, on account of its high efficiency, should be introduced in the
models of laser breakdown under high intensity
Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation
Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses
13 pags., 7 figs., 1 tab.Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous >low reflectivity> and >low transmission> behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.This work has been partly funded by Laserlab-Europe
(Grant Agreement No. 284464, EU’s Seventh Framework Programme,
Project No. SLIC002014), by the Spanish Ministry of
Economy and Competiveness (Project No. TEC2014-52642-
C2-1-R) as well as by the Danish Council for Independent
Research | Natural Sciences. M.G.-L. acknowledges the FPU
(Formación de Profesorado Universitario) Grant No. AP2012-
0217 awarded by the Spanish Ministry of Education.Peer Reviewe
Treatment challenges in and outside a network setting: Head and neck cancers
Head and neck cancer (HNC) is a rare disease that can affect different sites and is characterized by variable incidence and 5-year survival rates across Europe. Multiple factors need to be considered when choosing the most appropriate treatment for HNC patients, such as age, comorbidities, social issues, and especially whether to prefer surgery or radiation-based protocols. Given the complexity of this scenario, the creation of a highly specialized multidisciplinary team is recommended to guarantee the best oncological outcome and prevent or adequately treat any adverse effect. Data from literature suggest that the multidisciplinary team-based approach is beneficial for HNC patients and lead to improved survival rates. This result is likely due to improved diagnostic and staging accuracy, a more efficacious therapeutic approach and enhanced communication across disciplines. Despite the benefit of MTD, it must be noted that this approach requires considerable time, effort and financial resources and is usually more frequent in highly organized and high-volume centers. Literature data on clinical research suggest that patients treated in high-accrual centers report better treatment outcomes compared to patients treated in low-volume centers, where a lower radiotherapy-compliance and worst overall survival have been reported. There is general agreement that treatment of rare cancers such as HNC should be concentrated in high volume, specialized and multidisciplinary centers. In order to achieve this goal, the creation of international collaboration network is fundamental. The European Reference Networks for example aim to create an international virtual advisory board, whose objectives are the exchange of expertise, training, clinical collaboration and the reduction of disparities and enhancement of rationalize migration across Europe. The purpose of our work is to review all aspects and challenges in and outside this network setting planned for the management of HNC patients
Treatment challenges in and outside a specialist network setting: Pancreatic neuroendocrine tumours
Pancreatic Neuroendocrine Neoplasms comprise a group of rare tumours with special biology, an often indolent behaviour and particular diagnostic and therapeutic requirements. The specialized biochemical tests and radiological investigations, the complexity of surgical options and the variety of medical treatments that require individual tailoring, mandate a multidisciplinary approach that can be optimally achieved through an organized network. The present study describes currents concepts in the management of these tumours as well as an insight into the challenges of delivering the pathway in and outside a Network
Testicular germ-cell tumours and penile squamous cell carcinoma: Appropriate management makes the difference
Germ-cell tumours (GCT) of the testis and penile squamous cell carcinoma (PeSCC) are a rare and a very rare uro-genital cancers, respectively. Both tumours are well defined entities in terms of management, where specific recommendations - in the form of continuously up-to-dated guide lines-are provided. Impact of these tumour is relevant. Testicular GCT affects young, healthy men at the beginning of their adult life. PeSCC affects older men, but a proportion of these patients are young and the personal consequences of the disease may be devastating. Deviation from recommended management may be a reason of a significant prognostic worsening, as proper treatment favourably impacts on these tumours, dramatically on GCT and significantly on PeSCC. RARECAREnet data may permit to analyse how survivals may vary according to geographical areas, histology and age, leading to assume that non-homogeneous health-care resources may impact the cure and definitive outcomes. In support of this hypothesis, some epidemiologic datasets and clinical findings would indicate that survival may improve when appropriate treatments are delivered, linked to a different accessibility to the best health institutions, as a consequence of geographical, cultural and economic barriers. Finally, strong clues based on epidemiological and clinical data support the hypothesis that treatment delivered at reference centres or under the aegis of a qualified multi-institutional network is associated with a better prognosis of patients with these malignancies. The ERN EURACAN represents the best current European effort to answer this clinical need
Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser
Using a time-resolved interferometric technique, we study the laser-induced carrier-trapping dynamics in SiO 2 and Ge-doped SiO 2. The fast trapping of electrons in the band gap is associated with the formation of self-trapped excitons (STE). The STE trapping is doping dependent in SiO 2. The mean trapping time of electrons excited in the conduction band was found to be significantly lower in Ge-doped silica (75 ± 5 fs) when compared to pure silica (155 ± 5 fs). At our concentration level, this indicates that the plasma properties are determined by the presence of easily ionizable states such as the presence of Ge atoms in the glass network. Therefore, we suggest that in Ge-doped silica there exist an additional trapping pathway that leads to a significantly faster excitons trapping and a higher plasma density when compared to undoped silica. © 2011 American Physical Society
- …
