1,369 research outputs found

    Superbubbles

    Get PDF
    Individual massive stars with M sub bol -6 have huge stellar winds that create interstellar bubbles. Stars with masses greater than 8 solar mass are considered supernova progenitors. These massive stars are numerous in OB associations where few supernova remnants are detected. Model calculations describing the evolution of an association show: that large, hot cavities are formed by pushing the ambient gas into neutral shells; that the shell radii change with galactocentric radius; that only thirty percent of the interstellar medium is in the form of supercavities; and that a consequence is that only a small fraction of supernovae form supernova remnants

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Ultraviolet spectroscopy of the brightest supergiants in M31 and M33

    Get PDF
    Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For

    Low temperature properties of the infinite-dimensional attractive Hubbard model

    Full text link
    We investigate the attractive Hubbard model in infinite spatial dimensions by combining dynamical mean-field theory with a strong-coupling continuous-time quantum Monte Carlo method. By calculating the superfluid order parameter and the density of states, we discuss the stability of the superfluid state. In the intermediate coupling region above the critical temperature, the density of states exhibits a heavy fermion behavior with a quasi-particle peak in the dense system, while a dip structure appears in the dilute system. The formation of the superfluid gap is also addressed.Comment: 8 pages, 9 figure

    Diagrammatic Monte Carlo for Correlated Fermions

    Get PDF
    We show that Monte Carlo sampling of the Feynman diagrammatic series (DiagMC) can be used for tackling hard fermionic quantum many-body problems in the thermodynamic limit by presenting accurate results for the repulsive Hubbard model in the correlated Fermi liquid regime. Sampling Feynman's diagrammatic series for the single-particle self-energy we can study moderate values of the on-site repulsion (U/t4U/t \sim 4) and temperatures down to T/t=1/40T/t=1/40. We compare our results with high temperature series expansion and with single-site and cluster dynamical mean-field theory.Comment: 4 pages, 5 figures, stylistic change

    Revisited abundance diagnostics in quasars: Fe II/Mg II ratios

    Get PDF
    Both the Fe II UV emission in the 2000- 3000 A region [Fe II (UV)] and resonance emission line complex of Mg II at 2800 A are prominent features in quasar spectra. The observed Fe II UV/ Mg II emission ratios have been proposed as means to measure the buildup of the Fe abundance relative to that of the alpha-elements C, N, O, Ne and Mg as a function of redshift. The current observed ratios show large scatter and no obvious dependence on redshift. Thus, it remains unresolved whether a dependence on redshift exists and whether the observed Fe II UV/ Mg II ratios represent a real nucleosynthesis diagnostic. We have used our new 830-level model atom for Fe+ in photoionization calculations, reproducing the physical conditions in the broad line regions of quasars. This modeling reveals that interpretations of high values of Fe II UV/ Mg II are sensitive not only to Fe and Mg abundance, but also to other factors such as microturbulence, density, and properties of the radiation field. We find that the Fe II UV/ Mg II ratio combined with Fe II (UV)/ Fe II (Optical) emission ratio, where Fe II (Optical) denotes Fe II emission in 4000 - 6000 A can be used as a reliable nucleosynthesis diagnostic for the Fe/Mg abundance ratios for the physical conditions relevant to the broad-line regions (BLRs) of quasars. This has extreme importance for quasar observations with the Hubble Space Telescope and also with the future James Webb Space Telescope.Comment: kverner.gzip, 9 pages, f1-5.eps; aastex.cls; aastexug.sty, ApJL in pres

    Preliminary report on IUE spectra of the Crab Nebula

    Get PDF
    The Crab Nebula is marginally observable with the IUE. Observations of the optically brightest filamentary regions, made with IUE in August 1979, show the C IV lambda 1549, He II lambda 1640, and C III lambda 1909 emission lines. The intensities of these lines were compared with the visual wavelength data. It appears that carbon is not overabundant in the Crab; carbon/oxygen is approximately normal and oxygen is slightly scarcer than normal as a fraction of the total mass

    Analytic Continuation of Quantum Monte Carlo Data by Stochastic Analytical Inference

    Full text link
    We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad-hoc assumptions introduced in similar algortihms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum entropy calculation

    Thermodynamics of the 3D Hubbard model on approach to the Neel transition

    Get PDF
    We study the thermodynamic properties of the 3D Hubbard model for temperatures down to the Neel temperature using cluster dynamical mean-field theory. In particular we calculate the energy, entropy, density, double occupancy and nearest-neighbor spin correlations as a function of chemical potential, temperature and repulsion strength. To make contact with cold-gas experiments, we also compute properties of the system subject to an external trap in the local density approximation. We find that an entropy per particle S/N0.65(6)S/N \approx 0.65(6) at U/t=8U/t=8 is sufficient to achieve a Neel state in the center of the trap, substantially higher than the entropy required in a homogeneous system. Precursors to antiferromagnetism can clearly be observed in nearest-neighbor spin correlators.Comment: 4 pages, 6 figure
    corecore