3,890 research outputs found
Estimating the characteristics of runoff inflow into Lake Gojal in ungauged, highly glacierized upper Hunza River Basin, Pakistan
Motivated by the potential flood outburst of Lake Gojal in the ungauged highly glacierized (27%) upper Hunza River Basin (HRB) in Pakistan that was dammed by a massive landslide on 4 January 2010, we attempt to analyze the characteristics of water inflow to the lake employing remote sensing data, two hydrological models, and sparsely observed data. One of the models (Model I) is a monthly degree-day model, while another (Model II) is the variable infiltration capacity (VIC) model. The mixture of glacier runoff output from Model I and runoff over unglacierized areas calculated by Model II has a similar seasonal variation pattern as that estimated from data recorded at a downstream station. This suggests that glacier runoff is the main source (87%) of runoff inflow into the lake. A sensitivity analysis suggests that the water inflow to the lake is highly sensitive to an increase in air temperature. Runoff in May is predicted to sharply increase by 15% to more than two-fold if the air temperature increases by 1 to 7, but it is predicted to increase only from 9% to 34% if the precipitation increases by 10% to 40%. The results suggested that the water inflow into Lake Gojal will not sharply rise even if there is heavy rain, and it needs to be in caution if the air temperature sharply increases. Analysis on long-term air temperature record indicates that the water inflow into the lake in May 2010 was probably less than average owing to the relatively low air temperature. Consequently, the flood outburst did not occur before the completion of the spillway on 29 May 2010. © 2013 China University of Geosciences and Springer-Verlag Berlin Heidelberg
Application of a grid-scale lateral discharge model in the BALTEX region
In this study, a hydrological discharge model is presented which may be applied as a tool to validate the simulation of the hydrologic cycle of atmospheric models that are used in climate change studies. It can also be applied in studies of global climate change to investigate how changes in climate may affect the discharge of large rivers. The model was developed for the application with the climate models used at the Max-Planck- Institute for Meteorology. It describes the translation and retention of the lateral waterflows on the global scale as a function of the spatially distributed land surface characteristics which are globally available. Here, global scale refers to the resolution of 0.5° and lower, corresponding to a typical average gridbox area of about 2500 km2. The hydrological discharge model separates between the flow processes of overland flow, baseflow and overflow. The model parameters are mainly functions of the gridbox characteristics of topography and gridbox length. The hydrological discharge model is applied to the BALTEX (Baltic Sea Experiment) region using input from an atmospheric general circulation model (ECHAM4) as well as from a regional climate model (REMO). The simulated inflows into the Baltic Sea and its sub- catchments are compared to observed and naturalized discharges. The results of this comparison are discussed and the simulated values of precipitation, surface air temperature and accumulated snowpack are compared to both observed data and surrogate data
Definition of socioeconomic scenarios for land surface hydrology simulations of the 21st century
On the role of soil moisture in the generation of heavy rainfall during the Oder flood event in July 1997
Soil moisture-atmosphere feedbacks play an important role in the regional climate over many regions worldwide, not only for the mean climate but also for extreme events. Several studies have shown that the extent and severity of droughts and heat waves can be significantly impacted by dry or wet soil moisture conditions. To date, the impact of soil moisture on heavy rainfall events has been less frequently investigated. Thus, we consider the role of soil moisture in the formation of heavy rainfall using the Oder flood event in July 1997 as an example. Here, we used the regional climate model CCLM as an uncoupled stand alone model and the coupled COSTRICE system, where CCLM is coupled with an ocean and a sea ice model over the Baltic and North Sea regions. The results from climate simulations over Europe show that the coupled model can capture the second phase (18-20 July) of heavy rainfall that led to the Oder flood, while the uncoupled model does not. Sensitivity experiments demonstrate that the better performance of the coupled model can be attributed to the simulated soil moisture conditions in July 1997 in Central Europe, which were wetter for the coupled model than for the uncoupled model. This finding indicates that the soil moisture preceding the event significantly impacted the generation of heavy rainfall in this second phase. The better simulation in the coupled model also implies the added value that the atmosphere-ocean coupling has on the simulation of this specific extreme event. As none of the model versions captured the first phase (4-8 July), despite the differences in soil moisture, it can be concluded that the importance of soil moisture for the generation of heavy rainfall events strongly depends on the event and the general circulation pattern associated with it
Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling
Large-scale hydrological modelling has become increasingly wide-spread during the last decade. An annual workshop series on large-scale hydrological modelling has provided, since 1997, a forum to the German-speaking community for discussing recent developments and achievements in this research area. In this paper we present the findings from the 2007 workshop which focused on advances and visions in large-scale hydrological modelling. We identify the state of the art, difficulties and research perspectives with respect to the themes "sensitivity of model results", "integrated modelling" and "coupling of processes in hydrosphere, atmosphere and biosphere". Some achievements in large-scale hydrological modelling during the last ten years are presented together with a selection of remaining challenges for the future
Violation and persistence of the K-quantum number in warm rotating nuclei
The validity of the K-quantum number in rapidly rotating warm nuclei is
investigated as a function of thermal excitation energy U and angular momentum
I, for the rare-earth nucleus 163Er. The quantal eigenstates are described with
a shell model which combines a cranked Nilsson mean-field and a residual
two-body interaction, together with a term which takes into account the angular
momentum carried by the K-quantum number in an approximate way. K-mixing is
produced by the interplay of the Coriolis interaction and the residual
interaction; it is weak in the region of the discrete rotational bands (U
\lesim 1MeV), but it gradually increases until the limit of complete violation
of the K-quantum number is approached around U \sim 2 - 2.5 MeV. The calculated
matrix elements between bands having different K-quantum numbers decrease
exponentially as a function of , in qualitative agreement with recent
data.Comment: 29 pages, 7 figure
Web-Wide Application Customization:The Case of Mashups
Application development of is commonly a balancing of interests, as the question of what should actually be implemented is answered differently by different stakeholders. This paper considers mashups, which are a way of allowing an application to grow beyond the capabilities of the original developers. First, it introduces several approaches to integrate mashups into the services, or Web pages, that they are based upon. These approaches commonly implement ways to determine which mashups are potentially relevant for display in a certain Web page context. One approach, ActiveTags, enables users to create reliable mashups based on tags, which effectively, leads to customized views of Web pages with tagged content. A scenario that demonstrates the potential benefits of this approach is presented. Second, a formalization of the approaches is presented which uses a relational analog to show their commonalities. The abstraction from implementation specifics opens the range of vision for fundamental capabilities and gives a clear picture of future work
Quantitative multispectral ex vivo optical evaluation of human ovarian tissue using spatial frequency domain imaging
- …
