1,794 research outputs found
Maternal thyroid function and child educational attainment: prospective cohort study
Objective: To determine if first trimester maternal thyroid dysfunction is a critical determinant of child scholastic performance and overall educational attainment.
Design: Prospective cohort study.
Setting: Avon Longitudinal Study of Parents and Children cohort in the UK.
Participants: 4615 mother-child pairs with an available first trimester sample (median 10 weeks gestation, interquartile range 8-12).
Exposures: Free thyroxine, thyroid stimulating hormone, and thyroid peroxidase antibodies assessed as continuous measures and the seven clinical categories of maternal thyroid function.
Main outcome measures: Five age-specific national curriculum assessments in 3580 children at entry stage assessment at 54 months, increasing up to 4461 children at their final school assessment at age 15.
Results: No strong evidence of clinically meaningful associations of first trimester free thyroxine and thyroid stimulating hormone levels with entry stage assessment score or Standard Assessment Test scores at any of the key stages was found. Associations of maternal free thyroxine or thyroid stimulating hormone with the total number of General Certificates of Secondary Education (GCSEs) passed (range 0-16) were all close to the null: free thyroxine, rate ratio per pmol/L 1.00 (95% confidence interval 1.00 to 1.01); and thyroid stimulating hormone, rate ratio 0.98 (0.94 to 1.02). No important relationship was observed when more detailed capped scores of GCSEs allowing for both the number and grade of pass or when language, mathematics, and science performance were examined individually or when all educational assessments undertaken by an individual from school entry to leaving were considered. 200 (4.3%) mothers were newly identified as having hypothyroidism or subclinical hypothyroidism and 97 (2.1%) subclinical hyperthyroidism or hyperthyroidism. Children of mothers with thyroid dysfunction attained an equivalent number of GCSEs and equivalent grades as children of mothers with euthyroidism.
Conclusions: Maternal thyroid dysfunction in early pregnancy does not have a clinically important association with impaired child performance at school or educational achievement
The Bolocam 1.1 mm Lockman Hole Galaxy Survey: SHARC II 350 micron Photometry and Implications for Spectral Models, Dust Temperatures, and Redshift Estimation
We present 350 micron photometry of all 17 galaxy candidates in the Lockman
Hole detected in a 1.1 mm Bolocam survey. Several of the galaxies were
previously detected at 850 microns, at 1.2 mm, in the infrared by Spitzer, and
in the radio. Nine of the Bolocam galaxy candidates were detected at 350
microns and two new candidates were serendipitously detected at 350 microns
(bringing the total in the literature detected in this way to three). Five of
the galaxies have published spectroscopic redshifts, enabling investigation of
the implied temperature ranges and a comparison of photometric redshift
techniques.
Lambda = 350 microns lies near the spectral energy distribution peak for z =
2.5 thermally emitting galaxies. Thus, luminosities can be measured without
extrapolating to the peak from detection wavelengths of lambda > 850 microns.
Characteristically, the galaxy luminosities lie in the range 1.0 - 1.2 x 10^13
L_solar, with dust temperatures in the range of 40 K to 70 K, depending on the
choice of spectral index and wavelength of unit optical depth. The implied dust
masses are 3 - 5 x 10^8 M_solar. We find that the far-infrared to radio
relation for star-forming ULIRGs systematically overpredicts the radio
luminosities and overestimates redshifts on the order of Delta z ~ 1, whereas
redshifts based on either on submillimeter data alone or the 1.6 micron stellar
bump and PAH features are more accurate.Comment: In Press (to appear in Astrophysical Journal, ApJ 20 May 2006 v643 1)
47 pages, 10 figures, 4 table
A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam
We have surveyed two science fields totaling one square degree with Bolocam
at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev-
Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields.
Our survey is sensitive to angular scales with an effective angular multipole
of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60
arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to
constrain the level of total astronomical anisotropy, modeled as a flat
bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590,
760, and 830 uKCMB^2. We statistically subtract the known contribution from
primary CMB anisotropy, including cosmic variance, to obtain constraints on the
SZE anisotropy contribution. Now including flux calibration uncertainty, our
frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are
690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum
suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of
the SZE anisotropy signal, we obtain upper limits on the average amplitude of
their spectrum weighted by our transfer function of 790, 1060, and 1080
uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power
spectrum of density fluctuations, of 1.57. These are the first constraints on
anisotropy and sigma8 from survey data at these angular scales at frequencies
near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap
By hook or by crook? Morphometry, competition and cooperation in rodent sperm
Background
Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or “trains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm.
Methodology/Principal Findings
Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse.
Conclusions
Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function
Recommended from our members
Stops making sense: translational trade-offs and stop codon reassignment
Background
Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature.
Results
In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences.
Conclusions
We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants
Microguards and micromessengers of the genome
The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic
Micro language planning for multilingual education : agency in local contexts
This paper overviews some of the domains of application of micro-level language planning approaches to foster multilingual education. It examines the language planning of local agents and the contexts in which their work contributes to multilingual education, either to expand or limit educational possibilities. It identifies four broad contexts of language planning activity in which local agents work: the local implementation of macro-level policy, contestation of macro-level policy, addressing local needs in the absence of macro-level policy and opening new possibilities for developing multilingualism. These contexts provide a way of framing the contribution that micro language planning work and local agents can make to multilingual education
Adaptive evolution of Toll-like receptor 5 in domesticated mammals
<p>Abstract</p> <p>Background</p> <p>Previous studies have proposed that mammalian toll like receptors (TLRs) have evolved under diversifying selection due to their role in pathogen detection. To determine if this is the case, we examined the extent of adaptive evolution in the TLR5 gene in both individual species and defined clades of the mammalia.</p> <p>Results</p> <p>In support of previous studies, we find evidence of adaptive evolution of mammalian TLR5. However, we also show that TLR5 genes of domestic livestock have a concentration of single nucleotide polymorphisms suggesting a specific signature of adaptation. Using codon models of evolution we have identified a concentration of rapidly evolving codons within the TLR5 extracellular domain a site of interaction between host and the bacterial surface protein flagellin.</p> <p>Conclusions</p> <p>The results suggest that interactions between pathogen and host may be driving adaptive change in TLR5 by competition between species. In support of this, we have identified single nucleotide polymorphisms (SNP) in sheep and cattle TLR5 genes that are co-localised and co-incident with the predicted adaptive codons suggesting that adaptation in this region of the TLR5 gene is on-going in domestic species.</p
Planning and Leveraging Event Portfolios: Towards a Holistic Theory
This conceptual paper seeks to advance the discourse on the leveraging and legacies of events by examining the planning, management, and leveraging of event portfolios. This examination shifts the common focus from analyzing single events towards multiple events and purposes that can enable cross-leveraging among different events in pursuit of attainment and magnification of specific ends. The following frameworks are proposed: (1) event portfolio planning and leveraging, and (2) analyzing events networks and inter-organizational linkages. These frameworks are intended to provide, at this infancy stage of event portfolios research, a solid ground for building theory on the management of different types and scales of events within the context of a portfolio aimed to obtain, optimize and sustain tourism, as well as broader community benefits
Effects of Spaceflight on Drosophila Neural Development
The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight
- …
