118 research outputs found

    Arrays of Individual DNA Molecules on Nanopatterned Substrates

    Get PDF
    Arrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions. Here, we create single-molecule arrays by electrostatically adhering single-stranded DNA of gene-like length onto positively charged carbon nanoislands. The nanosites are so small that only one molecule can bind per island. Undesired adsorption of DNA to the surrounding non-target areas is prevented via a surface-passivating film. Of further relevance, the DNA arrays are of tunable dimensions, and fabricated on optically transparent substrates that enable singe-molecule detection with fluorescence microscopy. The arrays are hence compatible with a wide range of bioanalytical, biophysical, and cell biological studies where individual DNA strands are either examined in isolation, or interact with other molecules or cells

    Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays

    Get PDF
    The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays

    Optimization approaches for the design and operation of open-loop shallow geothermal systems

    Full text link
    The optimization of open-loop shallow geothermal systems, which includes both design and operational aspects, is an important research area aimed at improving their efficiency and sustainability and the effective management of groundwater as a shallow geothermal resource. This paper investigates various approaches to address optimization problems arising from such research questions. The identified optimization approaches are thoroughly analyzed based on criteria such as computational efficiency and applicability. Moreover, a novel classification scheme is introduced that categorizes the approaches according to the type of groundwater simulation model (numerical or simplified) and the optimization algorithm used (gradient-based or derivative-free). Finally, a comprehensive review of existing approaches is provided, highlighting their strengths and limitations and offering recommendations for both the use of existing approaches and the development of new ones in this field.Comment: 16 pages, 3 figures; submitted to Advances in Geoscience

    Antimicrobial Activity and Docking Study of Synthesized Xanthen-3-on Derivatives

    Get PDF
    Twelve previously synthesized biologically active 2,6,7-trihydroxy-9-aryl-3H-xanthen-3-one derivatives (1-12) were evaluated in vitro for their antimicrobial activity against four bacteria, S. aureus, B. subtilis P. aeruginosa and E. coli, and two fungi strains, C. albicans and S. cerevisiae. The most potent compound were derivatives 1 which possess hydroxyl group and bromine as substituent and 11 with bromine as substituent on phenyl ring. The results indicate that bromine increase antimicrobial activity of 2,6,7-trihydroxy-9-aryl-3-Hxanthen-3-one derivatives. Compound 7 with ethoxy substituent on phenyl ring showed the least activity against tested bacteria and fungi strains, which is in line with an earlier observation that ethoxy substitution decreases antimicrobial activity. The most and the least potent compounds were subjected to molecular docking simulations to preliminary find out the potential molecular target and at the same moment further support the experimental antimicrobial test of xanthen derivatives

    Antimicrobial Activity and Docking Study of Synthesized Xanthen-3-on Derivatives

    Get PDF
    Twelve previously synthesized biologically active 2,6,7-trihydroxy-9-aryl-3H-xanthen-3-one derivatives (1-12) were evaluated in vitro for their antimicrobial activity against four bacteria, S. aureus, B. subtilis P. aeruginosa and E. coli, and two fungi strains, C. albicans and S. cerevisiae. The most potent compound were derivatives 1 which possess hydroxyl group and bromine as substituent and 11 with bromine as substituent on phenyl ring. The results indicate that bromine increase antimicrobial activity of 2,6,7-trihydroxy-9-aryl-3-Hxanthen-3-one derivatives. Compound 7 with ethoxy substituent on phenyl ring showed the least activity against tested bacteria and fungi strains, which is in line with an earlier observation that ethoxy substitution decreases antimicrobial activity. The most and the least potent compounds were subjected to molecular docking simulations to preliminary find out the potential molecular target and at the same moment further support the experimental antimicrobial test of xanthen derivatives

    Systematic Identification of Combinatorial Drivers and Targets in Cancer Cell Lines

    Get PDF
    There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance

    The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture

    Get PDF
    Contains fulltext : 220729.pdf (publisher's version ) (Open Access)The tumour microenvironment (TME) forms a major obstacle in effective cancer treatment and for clinical success of immunotherapy. Conventional co-cultures have shed light onto multiple aspects of cancer immunobiology, but they are limited by the lack of physiological complexity. We develop a human organotypic skin melanoma culture (OMC) that allows real-time study of host-malignant cell interactions within a multicellular tissue architecture. By co-culturing decellularized dermis with keratinocytes, fibroblasts and immune cells in the presence of melanoma cells, we generate a reconstructed TME that closely resembles tumour growth as observed in human lesions and supports cell survival and function. We demonstrate that the OMC is suitable and outperforms conventional 2D co-cultures for the study of TME-imprinting mechanisms. Within the OMC, we observe the tumour-driven conversion of cDC2s into CD14(+) DCs, characterized by an immunosuppressive phenotype. The OMC provides a valuable approach to study how a TME affects the immune system

    Human variation databases

    Get PDF
    More than 100 000 human genetic variations have been described in various genes that are associated with a wide variety of diseases. Such data provides invaluable information for both clinical medicine and basic science. A number of locus-specific databases have been developed to exploit this huge amount of data. However, the scope, format and content of these databases differ strongly and as no standard for variation databases has yet been adopted, the way data is presented varies enormously. This review aims to give an overview of current resources for human variation data in public and commercial resources
    corecore