438 research outputs found
Ab-initio study of oxygen vacancies in alpha-quartz
Extrinsic levels, formation energies, and relaxation geometries are
calculated ab initio for oxygen vacancies in alpha-quartz SiO2. The vacancy is
found to be thermodynamically stable in the charge states Q=+3, Q=0, Q=--2, and
Q=-3. The charged states are stabilized by large and asymmetric distortions
near the vacancy site. Concurrently, Franck-Condon shifts for absorption and
recombination related to these states are found to be strongly asymmetric. In
undoped quartz, the ground state of the vacancy is the neutral charge state,
while for moderate p-type and n-type doping, the +3 and -3 states are favored,
respectively, over a wide Fermi level window. Optical transitions related to
the vacancy are predicted at around 3 eV and 6.5 eV (absorption) and 2.5 to 3.0
eV (emission), depending on the charge state of the ground state.Comment: 6 figures included, but only Fig.1 actually change
Health beliefs as a key determinant of intent to use anabolic-androgenic steroids (AAS) among high-school football players: implications for prevention
The use of anabolic-androgenic steroids (AAS) is problematic for youth because of negative effects such as reduced fertility, increased aggression and exposure to toxic chemicals. An effective programme for addressing this problem is Adolescents Training and Learning to Avoid Steroids (ATLAS). This secondary analysis expands prior research by identifying prominent mechanisms of change and highlighting key longitudinal processes that contributed to the success of ATLAS. The current sample consists of highschool football players (N = 1.068; Mage = 15.25) who began ATLAS in grades nine through eleven and participated in booster sessions for two years post-baseline. Knowledge of AAS effects, belief in media ads, reasons not to use AAS, perceived severity of and susceptibility to AAS effects and ability to resist drug offers were critical mediators of the relations between ATLAS and outcomes. Modern applications of the ATLAS programme are also discussed
An optical fibre rereadable radiation dosimeter for use at high doses and at elevated temperature
A new type of radiation dosimeter for large radiation doses is described, which is based on silica fibre material. Conventional radioluminescence or thermoluminescence of silica produces emission in the blue region of the spectrum. However, in this new material irradiation, in conjunction with a heat treatment, generates a green emission band. The intensity of the green band can be monitored by either radioluminescence or thermoluminescence using a test dose. The signals are directly related to the total irradiation history of the material. The dosimeter is therefore rereadable. The production mechanism of the green emission centre requires a thermal processing stage, with an activation energy of 0.52 eV. Further, the dosimeter is effective at recording radiation during high-temperature exposure, to at least 400°C, with the subsequent dosimetry being performed below 200°C
Identidad étnica y redes personales entre jóvenes de Sarajevo
After fieldwork conducted among young people in Sarajevo, we found a relation between the discourses sustained by them and the ethnic categories they use to classify people and to identify themselves. Also we have found that people self-affiliated as "Bosnians" play an important role in the network of multiethnic relationships, in which strong ties, surprisingly, are still very important. Finally we found a relationship between the composition of personal networks and the ethnic discourses that are maintained.Después de un trabajo de campo realizado con un grupo de jóvenes en Sarajevo, hemos constatado la existencia de una relación entre los discursos que sostienen y las categorías étnicas que utilizan tanto para clasificar a los demás como para auto-identificarse. Asimismo hemos encontrado que los jóvenes que se autodenominan "Bosnios" juegan un rol importante en la red de relaciones multiétnicas, en la que los lazos fuertes, sorprendentemente, son muy importantes. Finalmente hemos hallado una relación entre la composición de las redes personales y los discursos étnicos que se sostienen. Vivimos, o creemos vivir, en múltiples "comunidades", imaginadas o no. Al mismo tiempo, el individuo y no el lugar, la familia o el grupo, se sitúa en el centro de la vida social y de las comunicaciones (Cf. Wellman, 2001). En este contexto, inducido por el avance del capitalismo flexible (Castells, 1996), pensamos que para entender adecuadamente la identidad o identidades postuladas por los individuos es necesario estudiar las redes personales y su dinámica. Desde esta perspectiva no podemos hablar de "etnias" o "multietnicidad" sin más precisiones, pues son conceptos basados en una concepción esencialista y estática de la identidad individual. El concepto de "sociedad multiétnica" es utilizado de una manera engañosamente progresista y objetiva, pues lo que en realidad legitima es la existencia de diferencias esenciales entre personas, alejando en lugar de acercar. Sin embargo, somos plenamente conscientes que los discursos esencialistas de la identidad étnica son omnipresentes, con enormes efectos políticos e individuales. Que planteemos que la concepción esencialista de la identidad sea inapropiada desde un punto de vista académico, no significa que ésta no se utilice políticamente y por lo tanto tenga consecuencias formidables en las relaciones sociales. Precisamente el estudio de las redes personales nos permite situarnos en una perspectiva que no utiliza con pretensiones analíticas conceptos "folk", como son los de "etnia", "pueblo" o "nación", sino que los sitúa en el terreno de los discursos sustentados por los actores (y los estados y medios de comunicación) y nos permite contextualizarlos mediante conceptos etic, es decir, impuestos por los investigadores. Sólo así podemos superar las tautologías que abundan en los discursos étnicos
Fast Measurements of Flow Through Mitral Regurgitant Orifices With Magnetic Resonance Phase Velocity Mapping
Magnetic-resonance (MR) phase velocity mapping (PVM) shows promise in measuring the mitral regurgitant volume. However, in its conventional nonsegmented form, MR-PVM is slow and impractical for clinical use. The aim of this study was to evaluate the accuracy of rapid, segmented k-spaceMR-PVM in quantifying the mitral regurgitant flow through a control volume (CV) method. Two segmented MR-PVM schemes, one with seven (seg-7) and one with nine (seg-9) lines per segment, were evaluated in acrylic regurgitant mitral valve models under steady and pulsatile flow. A nonsegmented (nonseg) MR-PVM acquisition was also performed for reference. The segmented acquisitions were considerably faster (min) than the nonsegmented (\u3e45 min). The regurgitant flow rates and volumes measured with segmented MR-PVM agreed closely with those measured with nonsegmented MR-PVM (differences 0.05), when the CV was large enough to exclude the region of flow acceleration and aliasing from its boundaries. The regurgitant orifice shape (circular vs. slit-like) and the presence of aortic outflow did not significantly affect the accuracy of the results under both steady and pulsatile flow (p\u3e0.05). This study shows that segmented k-space MR-PVM canaccurately quantify the flow through regurgitant orifices using the CV method and demonstrates great clinical potential
Neutral Nitrogen Acceptors in ZnO: The \u3csup\u3e67\u3c/sup\u3eZn Hyperfine Interactions
Electron paramagnetic resonance (EPR) is used to characterize the 67Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N−) initially present in the crystal are converted to their paramagnetic neutral charge state (N0) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N0 acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the 67Zn hyperfine parameters are A‖ = 37.0 MHz and A⊥ = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the 67Zn parameters are A1 = 14.5 MHz, A2 = 18.3 MHz, and A3 = 20.5 MHz with A3 along a [10ˉ10] direction (i.e., in the basal plane toward the nitrogen) and A2 along the [0001] direction. These 67Zn results and the related 14N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO
Sandstone matrix acidizing knowledge and future development
To meet rising global demands for energy, the oil and gas industry continuously strives to develop innovative oilfield technologies. With the development of new enhanced oil recovery techniques, sandstone acidizing has been significantly developed to contribute to the petroleum industry. Different acid combinations have been applied to the formation, which result in minimizing the near wellbore damage and improving the well productivity. A combination of hydrofluoric acid and hydrochloric acid (HF:HCl) known as mud acid has gained attractiveness in improving the porosity and permeability of the reservoir formation. However, high-temperature matrix acidizing is now growing since most of the wells nowadays become deeper and hotter temperature reservoirs, with a temperature higher than 200 °F. As a result, mud acid becomes corrosive, forms precipitates and reacts rapidly, which causes early consumption of acid, hence becoming less efficient due to high pH value. However, different acids have been developed to combat these problems where studies on retarded mud acids, organic-HF acids, emulsified acids, chelating agents have shown their effectiveness at different conditions. These acids proved to be alternative to mud acid in sandstone acidizing, but the reaction mechanism and experimental analysis have not yet been investigated. The paper critically reviews the sandstone acidizing mechanism with different acids, problems occurred during the application of different acids and explores the reasons when matrix stimulation is successful over fracturing. This paper also explores the future developing requirement for matrix acidizing treatments and new experimental techniques that can be useful for further development, particularly in developing new acids and acidizing techniques, which would provide better results and information of topology, morphology and mineral dissolution and the challenges associated with implementing these “new” technologies
Noninvasive Quantification of Fluid Mechanical Energy Losses in the Total Cavopulmonary Connection with Magnetic Resonance Phase Velocity Mapping
A major determinant of the success of surgical vascular modifications, such as the total cavopulmonary connection (TCPC), is the energetic efficiency that is assessed by calculating the mechanical energy loss of blood flow through the new connection. Currently, however, to determine the energy loss, invasive pressure measurements are necessary. Therefore, this study evaluated the feasibility of the viscous dissipation (VD) method, which has the potential to provide the energy loss without the need for invasive pressure measurements. Two experimental phantoms, a U-shaped tube and a glass TCPC, were scanned in a magnetic resonance (MR) imaging scanner and the images were used to construct computational models of both geometries. MR phase velocity mapping (PVM) acquisitions of all three spatial components of the fluid velocity were made in both phantoms and the VD was calculated. VD results from MR PVM experiments were compared with VD results from computational fluid dynamics (CFD) simulations on the image-based computational models. The results showed an overall agreement between MR PVM and CFD. There was a similar ascending tendency in the VD values as the image spatial resolution increased. The most accurate computations of the energy loss were achieved for a CFD grid density that was too high for MR to achieve under current MR system capabilities (in-plane pixel size of less than 0.4 mm). Nevertheless, the agreement between the MR PVM and the CFD VD results under the same resolution settings suggests that the VD method implemented with a clinical imaging modality such as MR has good potential to quantify the energy loss in vascular geometries such as the TCPC
- …
