683 research outputs found
Persistent colonization with Tannerella forsythensis and loss of attachment in adolescents
Colonization with Tannerella forsythensis may characterize the conversion of periodontally healthy sites into diseased sites. This three-year study describes the prevalence of T forsythensis and its relationship to clinical loss of attachment (LOA) in a group of adolescents considered at risk of developing early chronic periodontitis. Adolescents with (LOA+) and without (LOA-) loss of attachment were examined at baseline and 1.5 and 3 yrs subsequently. On each occasion, attachment loss was measured on selected teeth, and the presence of T. forsythensis in their subgingival plaque samples was determined by PCR. T. forsythensis prevalence in LOA+ subjects at baseline (64%) increased to 82% and 86% on subsequent examinations. In contrast, prevalence of T. forsythensis in LOA- subjects was always significantly lower (25%, 36%, and 32%, respectively). The odds of loss of attachment were 8.16 times greater in subjects infected with T. forsythensis at each examination. These results suggest that T. forsythensis is strongly associated with loss of attachment in this adolescent population
Risks Posed by Reston, the Forgotten Ebolavirus
Out of the five members of the Ebolavirus family, four cause lifethreatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs
Generalized Toric Codes Coupled to Thermal Baths
We have studied the dynamics of a generalized toric code based on qudits at
finite temperature by finding the master equation coupling the code's degrees
of freedom to a thermal bath. As a consequence, we find that for qutrits new
types of anyons and thermal processes appear that are forbidden for qubits.
These include creation, annihilation and diffusion throughout the system code.
It is possible to solve the master equation in a short-time regime and find
expressions for the decay rates as a function of the dimension of the
qudits. Although we provide an explicit proof that the system relax to the
Gibbs state for arbitrary qudits, we also prove that above a certain crossing
temperature, qutrits initial decay rate is smaller than the original case for
qubits. Surprisingly this behavior only happens with qutrits and not with other
qudits with .Comment: Revtex4 file, color figures. New Journal of Physics' versio
Topological Color Codes and Two-Body Quantum Lattice Hamiltonians
Topological color codes are among the stabilizer codes with remarkable
properties from quantum information perspective. In this paper we construct a
four-valent lattice, the so called ruby lattice, governed by a 2-body
Hamiltonian. In a particular regime of coupling constants, degenerate
perturbation theory implies that the low energy spectrum of the model can be
described by a many-body effective Hamiltonian, which encodes the color code as
its ground state subspace. The gauge symmetry
of color code could already be realized by
identifying three distinct plaquette operators on the lattice. Plaquettes are
extended to closed strings or string-net structures. Non-contractible closed
strings winding the space commute with Hamiltonian but not always with each
other giving rise to exact topological degeneracy of the model. Connection to
2-colexes can be established at the non-perturbative level. The particular
structure of the 2-body Hamiltonian provides a fruitful interpretation in terms
of mapping to bosons coupled to effective spins. We show that high energy
excitations of the model have fermionic statistics. They form three families of
high energy excitations each of one color. Furthermore, we show that they
belong to a particular family of topological charges. Also, we use
Jordan-Wigner transformation in order to test the integrability of the model
via introducing of Majorana fermions. The four-valent structure of the lattice
prevents to reduce the fermionized Hamiltonian into a quadratic form due to
interacting gauge fields. We also propose another construction for 2-body
Hamiltonian based on the connection between color codes and cluster states. We
discuss this latter approach along the construction based on the ruby lattice.Comment: 56 pages, 16 figures, published version
Making the most of data:An information selection and assessment framework to improve water systems operations
Advances in Environmental monitoring systems are making a wide range of data available at increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time understanding of water systems conditions and to improve prediction of their future evolution, ultimately increasing our ability to make better decisions. Yet, many water systems are still operated using very simple information systems, typically based on simple statistical analysis and the operator’s experience. In this work, we propose a framework to automatically select the most valuable information to inform water systems operations supported by quantitative metrics to operationally and economically assess the value of this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a multiobjective context, accounting for hydropower production and flood control. First, we quantify the expected value of perfect information, meaning the potential space for improvement under the assumption of exact knowledge of the future system conditions. Second, we automatically select the most valuable information that could be actually used to improve the Hoa Binh operations. Finally, we assess the economic value of sample information on the basis of the resulting policy performance. Results show that our framework successfully select information to enhance the performance of the operating policies with respect to both the competing objectives, attaining a 40% improvement close to the target trade-off selected as potentially good compromise between hydropower production and flood control
Climate change and mountain water resources: overview and recommendations for research, management and policy
Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy. <br><br> After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields. <br><br> We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction
Recommended from our members
Analysis of the symmetry of electrodes for Electropalatography with Cone Beam CT Scanning
The process of compression of air and vibration of activity in the larynx through which speech is produced is of great interest in phonetics, phonology, psychology and is related to various areas of biomedical engineering as it has a strong relationship with cochlear implants, Parkinson’s disease and Stroke. One technique by means of which speech production is analysed is the use of electropalatography, in which an artificial palate, moulded to the speakers’ hard palate is introduced in the mouth. The palate contains a series of electrodes, which monitor contact between the tongue and the palate during speech production. There is interest in the symmetry or asymmetry of the movement of the tongue as this may be related to languages or right- or left-handedness, however this has never been thoroughly studied. A specific limitation of electropalatography for symmetry studies is that palates are hand-crafted and the position of the electrodes themselves may be asymmetric. In this work, we analyse the positioning of electrodes of one electropalatography setting. The symmetry was analysed by locating the electrodes of the palate through the observation of the palate with Computed Tomography. An algorithm to segment the electrodes and find the symmetry of left and right sides of the palates is described. No significant asymmetry was found for one specific palate. The methodology presented should allow the analysis of palates to be used in larger studies of speech production
- …
