128 research outputs found

    Enhancing Clinical Trial Sites in Low- and Middle-Income Countries to Facilitate Product Development in Response to the COVID-19 Pandemic

    Get PDF
    Background: The swift development of coronavirus disease 2019 (COVID-19) vaccines marked a monumental effort in global coordination and collaboration; however, there remained major disparities in vaccine access and research capacity across countries. Unequal participation in vaccine development studies from low- and middle- income countries (LMICs) clearly signaled an urgent need to strengthen health research infrastructure in those regions. Methods: With funding from the Gates Foundation (GF), this site readiness initiative carried out rapid capacity enhancement activities to enable large-scale, Phase 3 pivotal clinical trial conduct in LMICs. The International Vaccine Institute (IVI) worked with site partners in four countries (Mozambique, Ghana, Nepal, and the Philippines) after conducting feasibility assessments for site selection. Site-specific gaps were identified, and capacity building activities focused on staff training, site infrastructure, and resource mobilization were carried out over roughly 7 months from October 2020 to May 2021. Results: Despite pandemic-related challenges such as supply chain shortages, by the end of the capacity building efforts all sites were either contracted to or in discussions with trial sponsors to conduct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine studies. This article provides an overview of the site selection process, critical components of site establishment, and final site readiness evaluations carried out amidst a global health emergency. Conclusions: This experience illustrates the value of research capacity enhancement as essential to both pandemic preparedness and global health equity. The lessons learned are being carried into an ongoing initiative across West Africa, currently underway as the “Advancing Research Capabilities in West Africa (ARC-WA).

    Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: a modelling study

    Get PDF
    Background Enteric fever, a systemic infection caused by Salmonella enterica serovars Typhi and Paratyphi A, remains a major cause of morbidity and mortality in low-income and middle-income countries. Enteric fever is preventable through the provision of clean water and adequate sanitation and can be successfully treated with antibiotics. However, high levels of antimicrobial resistance (AMR) compromise the effectiveness of treatment. We provide estimates of the prevalence of AMR S Typhi and S Paratyphi A in 75 endemic countries, including 30 locations without data.Methods We used a Bayesian spatiotemporal modelling framework to estimate the percentage of multidrug resistance (MDR), fluoroquinolone non-susceptibility (FQNS), and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections for 1403 administrative level one districts in 75 endemic countries from 1990 to 2019. We incorporated data from a comprehensive systematic review, public health surveillance networks, and large multicountry studies on enteric fever. Estimates of the prevalence of AMR and the number of AMR infections (based on enteric fever incidence estimates by the Global Burden of Diseases study) were produced at the country, super-region, and total endemic area level for each year of the study.Findings We collated data from 601 sources, comprising 184225 isolates of S Typhi and S Paratyphi A, covering 45 countries over 30 years. We identified a decline of MDR S Typhi in south Asia and southeast Asia, whereas in sub-Saharan Africa, the overall prevalence increased from 6·0% (95% uncertainty interval 4·3–8·0) in 1990 to 72·7% (67·7–77·3) in 2019. Starting from low levels in 1990, the prevalence of FQNS S Typhi increased rapidly, reaching 95·2% (91·4–97·7) in south Asia in 2019. This corresponded to 2·5 million (1·5–3·8) MDR S Typhi infections and 7·4 million (4·7–11·3) FQNS S Typhi infections in endemic countries in 2019. The prevalence of third-generation cephalosporin-resistant S Typhi remained low across the whole endemic area over the study period, except for Pakistan where prevalence of third-generation cephalosporin resistance in S Typhi reached 61·0% (58·0–63·8) in 2019. For S Paratyphi A, we estimated low prevalence of MDR and third-generation cephalosporin resistance in all endemic countries, but a drastic increase of FQNS, which reached 95·0% (93·7–96·1; 3·5 million [2·2–5·6] infections) in 2019.Interpretation This study provides a comprehensive and detailed analysis of the prevalence of MDR, FQNS, and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections in endemic countries, spanning the last 30 years. Our analysis highlights the increasing levels of AMR in this preventable infection and serves as a resource to guide urgently needed public health interventions, such as improvements in water, sanitation, and hygiene and typhoid fever vaccination campaigns</p

    Beyond humanization and de-immunization: tolerization as a method for reducing the immunogenicity of biologics

    Get PDF
    Immune responses to some monoclonal antibodies (mAbs) and biologic proteins interfere with their efficacy due to the development of anti-drug antibodies (ADA). In the case of mAbs, most ADA target ‘foreign’ sequences present in the complementarity determining regions (CDRs). Humanization of the mAb sequence is one approach that has been used to render biologics less foreign to the human immune system. However, fully human mAbs can also drive immunogenicity. De-immunization (removing epitopes) has been used to reduce biologic protein immunogenicity. Here, we discuss a third approach to reducing the immunogenicity of biologics: introduction of Treg epitopes that stimulate Treg function and induce tolerance to the biologic protein. Supplementing humanization (replacing xenosequences with human) and de-immunization (reducing T effector epitopes) with tolerization (introducing Treg epitopes) where feasible, as a means of improving biologics ‘quality by design’, may lead to the development of ever more clinically effective, but less immunogenic, biologics

    Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Get PDF
    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target

    Structural and functional insights into asymmetric enzymatic dehydration of alkenols

    Get PDF
    The asymmetric dehydration of alcohols is an important process for the direct synthesis of alkenes. We report the structure and substrate specificity of the bifunctional linalool dehydratase isomerase (LinD) from the bacterium Castellaniella defragrans that catalyzes in nature the hydration of β-myrcene to linalool and the subsequent isomerization to geraniol. Enzymatic kinetic resolutions of truncated and elongated aromatic and aliphatic tertiary alcohols (C5-C15) that contain a specific signature motif demonstrate the broad substrate specificity of LinD. The three-dimensional structure of LinD from Castellaniella defragrans revealed a pentamer with active sites at the protomer interfaces. Furthermore, the structure of LinD in complex with the product geraniol provides initial mechanistic insights into this bifunctional enzyme. Site-directed mutagenesis confirmed active site amino acid residues essential for its dehydration and isomerization activity. These structural and mechanistic insights facilitate the development of hydrating catalysts, enriching the toolbox for novel bond-forming biocatalysis

    Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: a modelling study

    Get PDF
    Background Enteric fever, a systemic infection caused by Salmonella enterica serovars Typhi and Paratyphi A, remains a major cause of morbidity and mortality in low-income and middle-income countries. Enteric fever is preventable through the provision of clean water and adequate sanitation and can be successfully treated with antibiotics. However, high levels of antimicrobial resistance (AMR) compromise the effectiveness of treatment. We provide estimates of the prevalence of AMR S Typhi and S Paratyphi A in 75 endemic countries, including 30 locations without data. Methods We used a Bayesian spatiotemporal modelling framework to estimate the percentage of multidrug resistance (MDR), fluoroquinolone non-susceptibility (FQNS), and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections for 1403 administrative level one districts in 75 endemic countries from 1990 to 2019. We incorporated data from a comprehensive systematic review, public health surveillance networks, and large multicountry studies on enteric fever. Estimates of the prevalence of AMR and the number of AMR infections (based on enteric fever incidence estimates by the Global Burden of Diseases study) were produced at the country, super-region, and total endemic area level for each year of the study. Findings We collated data from 601 sources, comprising 184225 isolates of S Typhi and S Paratyphi A, covering 45 countries over 30 years. We identified a decline of MDR S Typhi in south Asia and southeast Asia, whereas in sub-Saharan Africa, the overall prevalence increased from 6·0% (95% uncertainty interval 4·3–8·0) in 1990 to 72·7% (67·7–77·3) in 2019. Starting from low levels in 1990, the prevalence of FQNS S Typhi increased rapidly, reaching 95·2% (91·4–97·7) in south Asia in 2019. This corresponded to 2·5 million (1·5–3·8) MDR S Typhi infections and 7·4 million (4·7–11·3) FQNS S Typhi infections in endemic countries in 2019. The prevalence of third-generation cephalosporin-resistant S Typhi remained low across the whole endemic area over the study period, except for Pakistan where prevalence of third-generation cephalosporin resistance in S Typhi reached 61·0% (58·0–63·8) in 2019. For S Paratyphi A, we estimated low prevalence of MDR and third-generation cephalosporin resistance in all endemic countries, but a drastic increase of FQNS, which reached 95·0% (93·7–96·1; 3·5 million [2·2–5·6] infections) in 2019. Interpretation This study provides a comprehensive and detailed analysis of the prevalence of MDR, FQNS, and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections in endemic countries, spanning the last 30 years. Our analysis highlights the increasing levels of AMR in this preventable infection and serves as a resource to guide urgently needed public health interventions, such as improvements in water, sanitation, and hygiene and typhoid fever vaccination campaign

    Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050

    Get PDF
    Background Antimicrobial resistance (AMR) poses an important global health challenge in the 21st century. A previous study has quantified the global and regional burden of AMR for 2019, followed with additional publications that provided more detailed estimates for several WHO regions by country. To date, there have been no studies that produce comprehensive estimates of AMR burden across locations that encompass historical trends and future forecasts. Methods We estimated all-age and age-specific deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 22 pathogens, 84 pathogen–drug combinations, and 11 infectious syndromes in 204 countries and territories from 1990 to 2021. We collected and used multiple cause of death data, hospital discharge data, microbiology data, literature studies, single drug resistance profiles, pharmaceutical sales, antibiotic use surveys, mortality surveillance, linkage data, outpatient and inpatient insurance claims data, and previously published data, covering 520 million individual records or isolates and 19 513 study-location-years. We used statistical modelling to produce estimates of AMR burden for all locations, including those with no data. Our approach leverages the estimation of five broad component quantities: the number of deaths involving sepsis; the proportion of infectious deaths attributable to a given infectious syndrome; the proportion of infectious syndrome deaths attributable to a given pathogen; the percentage of a given pathogen resistant to an antibiotic of interest; and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden attributable to and associated with AMR, which we define based on two counterfactuals; respectively, an alternative scenario in which all drug-resistant infections are replaced by drug-susceptible infections, and an alternative scenario in which all drug-resistant infections were replaced by no infection. Additionally, we produced global and regional forecasts of AMR burden until 2050 for three scenarios: a reference scenario that is a probabilistic forecast of the most likely future; a Gram-negative drug scenario that assumes future drug development that targets Gram-negative pathogens; and a better care scenario that assumes future improvements in health-care quality and access to appropriate antimicrobials. We present final estimates aggregated to the global, super-regional, and regional level. Findings In 2021, we estimated 4·71 million (95% UI 4·23–5·19) deaths were associated with bacterial AMR, including 1·14 million (1·00–1·28) deaths attributable to bacterial AMR. Trends in AMR mortality over the past 31 years varied substantially by age and location. From 1990 to 2021, deaths from AMR decreased by more than 50% among children younger than 5 years yet increased by over 80% for adults 70 years and older. AMR mortality decreased for children younger than 5 years in all super-regions, whereas AMR mortality in people 5 years and older increased in all super-regions. For both deaths associated with and deaths attributable to AMR, meticillin-resistant Staphylococcus aureus increased the most globally (from 261 000 associated deaths [95% UI 150 000–372 000] and 57 200 attributable deaths [34 100–80 300] in 1990, to 550 000 associated deaths [500 000–600 000] and 130 000 attributable deaths [113 000–146 000] in 2021). Among Gram-negative bacteria, resistance to carbapenems increased more than any other antibiotic class, rising from 619 000 associated deaths (405 000–834 000) in 1990, to 1·03 million associated deaths (909 000–1·16 million) in 2021, and from 127 000 attributable deaths (82 100–171 000) in 1990, to 216 000 (168 000–264 000) attributable deaths in 2021. There was a notable decrease in non-COVID-related infectious disease in 2020 and 2021. Our forecasts show that an estimated 1·91 million (1·56–2·26) deaths attributable to AMR and 8·22 million (6·85–9·65) deaths associated with AMR could occur globally in 2050. Super-regions with the highest all-age AMR mortality rate in 2050 are forecasted to be south Asia and Latin America and the Caribbean. Increases in deaths attributable to AMR will be largest among those 70 years and older (65·9% [61·2–69·8] of all-age deaths attributable to AMR in 2050). In stark contrast to the strong increase in number of deaths due to AMR of 69·6% (51·5–89·2) from 2022 to 2050, the number of DALYs showed a much smaller increase of 9·4% (–6·9 to 29·0) to 46·5 million (37·7 to 57·3) in 2050. Under the better care scenario, across all age groups, 92·0 million deaths (82·8–102·0) could be cumulatively averted between 2025 and 2050, through better care of severe infections and improved access to antibiotics, and under the Gram-negative drug scenario, 11·1 million AMR deaths (9·08–13·2) could be averted through the development of a Gram-negative drug pipeline to prevent AMR deaths. Interpretation This study presents the first comprehensive assessment of the global burden of AMR from 1990 to 2021, with results forecasted until 2050. Evaluating changing trends in AMR mortality across time and location is necessary to understand how this important global health threat is developing and prepares us to make informed decisions regarding interventions. Our findings show the importance of infection prevention, as shown by the reduction of AMR deaths in those younger than 5 years. Simultaneously, our results underscore the concerning trend of AMR burden among those older than 70 years, alongside a rapidly ageing global community. The opposing trends in the burden of AMR deaths between younger and older individuals explains the moderate future increase in global number of DALYs versus number of deaths. Given the high variability of AMR burden by location and age, it is important that interventions combine infection prevention, vaccination, minimisation of inappropriate antibiotic use in farming and humans, and research into new antibiotics to mitigate the number of AMR deaths that are forecasted for 2050. Funding UK Department of Health and Social Care's Fleming Fund using UK aid, and the Wellcome Trust
    corecore