3,282 research outputs found

    Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model

    Full text link
    We derive macroscopic traffic equations from specific gas-kinetic equations, dropping some of the assumptions and approximations made in previous papers. The resulting partial differential equations for the vehicle density and average velocity contain a non-local interaction term which is very favorable for a fast and robust numerical integration, so that several thousand freeway kilometers can be simulated in real-time. The model parameters can be easily calibrated by means of empirical data. They are directly related to the quantities characterizing individual driver-vehicle behavior, and their optimal values have the expected order of magnitude. Therefore, they allow to investigate the influences of varying street and weather conditions or freeway control measures. Simulation results for realistic model parameters are in good agreement with the diverse non-linear dynamical phenomena observed in freeway traffic.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://www.theo2.physik.uni-stuttgart.de/treiber.htm

    Fundamentals of Traffic Flow

    Full text link
    From single vehicle data a number of new empirical results concerning the density-dependence of the velocity distribution and its moments as well as the characteristics of their temporal fluctuations have been determined. These are utilized for the specification of some fundamental relations of traffic flow and compared with existing traffic theories.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Gas-Kinetic-Based Traffic Model Explaining Observed Hysteretic Phase Transition

    Full text link
    Recently, hysteretic transitions to `synchronized traffic' with high values of both density and traffic flow were observed on German freeways [B. S. Kerner and H. Rehborn, Phys. Rev. Lett. 79, 4030 (1997)]. We propose a macroscopic traffic model based on a gas-kinetic approach that can explain this phase transition. The results suggest a general mechanism for the formation of probably the most common form of congested traffic.Comment: With corrected formula (3). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Structure and Instability of High-Density Equations for Traffic Flow

    Full text link
    Similar to the treatment of dense gases, fluid-dynamic equations for the dynamics of congested vehicular traffic are derived from Enskog-like kinetic equations. These contain additional terms due to the anisotropic vehicle interactions. The calculations are carried out up to Navier-Stokes order. A linear instability analysis indicates an additional kind of instability compared to previous macroscopic traffic models. The relevance for describing granular flows is outlined.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Generalized Force Model of Traffic Dynamics

    Full text link
    Floating car data of car-following behavior in cities were compared to existing microsimulation models, after their parameters had been calibrated to the experimental data. With these parameter values, additional simulations have been carried out, e.g. of a moving car which approaches a stopped car. It turned out that, in order to manage such kinds of situations without producing accidents, improved traffic models are needed. Good results have been obtained with the proposed generalized force model.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Determination of Interaction Potentials in Freeway Traffic from Steady-State Statistics

    Full text link
    Many-particle simulations of vehicle interactions have been quite successful in the qualitative reproduction of observed traffic patterns. However, the assumed interactions could not be measured, as human interactions are hard to quantify compared to interactions in physical and chemical systems. We show that progress can be made by generalizing a method from equilibrium statistical physics we learned from random matrix theory. It allows one to determine the interaction potential via distributions of the netto distances s of vehicles. Assuming power-law interactions, we find that driver behavior can be approximated by a forwardly directed 1/s potential in congested traffic, while interactions in free traffic are characterized by an exponent of approximately 4. This is relevant for traffic simulations and the assessment of telematic systems.Comment: For related work see http://www.helbing.or

    How to create an innovation accelerator

    Get PDF
    Abstract.: The purpose of this White Paper of the EU Support Action "Visioneer” (see www.visioneer.ethz.ch) is to address the following goals: 1. Identify new ways of publishing, evaluating, and reporting scientific progress. 2. Promote ICT solutions to increase the awareness of new emerging trends. 3. Invent tools to enhance Europe's innovation potential. 4. Develop new strategies to support a sustainable technological development. 5. Lay the foundations for new ways to reach societal benefits and respond to industrial needs using IC

    From social data mining to forecasting socio-economic crises

    Get PDF
    Abstract.: The purpose of this White Paper of the EU Support Action "Visioneer”(see www.visioneer.ethz.ch) is to address the following goals: 1. Develop strategies to quickly increase the objective knowledge about social and economic systems. 2. Describe requirements for efficient large-scale scientific data mining of anonymized social and economic data. 3. Formulate strategies how to collect stylized facts extracted from large data set. 4. Sketch ways how to successfully build up centers for computational social science. 5. Propose plans how to create centers for risk analysis and crisis forecasting. 6. Elaborate ethical standards regarding the storage, processing, evaluation, and publication of social and economic dat

    Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model

    Full text link
    The present paper proposes a novel interpretation of the widely scattered states (called synchronized traffic) stimulated by Kerner's hypotheses about the existence of a multitude of metastable states in the fundamental diagram. Using single vehicle data collected at the German highway A1, temporal velocity patterns have been analyzed to show a collection of certain fragments with approximately constant velocities and sharp jumps between them. The particular velocity values in these fragments vary in a wide range. In contrast, the flow rate is more or less constant because its fluctuations are mainly due to the discreteness of traffic flow. Subsequently, we develop a model for synchronized traffic that can explain these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke, Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car density, mean velocity, and additional order parameters hh and aa that are due to the many-particle effects of the vehicle interaction. The parameter hh describes the multilane correlations in the vehicle motion. Together with the car density it determines directly the mean velocity. The parameter aa, in contrast, controls the evolution of hh only. The model assumes that aa fluctuates randomly around the value corresponding to the car configuration optimal for lane changing. When it deviates from this value the lane change is depressed for all cars forming a local cluster. Since exactly the overtaking manoeuvres of these cars cause the order parameter aa to vary, the evolution of the car arrangement becomes frozen for a certain time. In other words, the evolution equations form certain dynamical traps responsible for the long-time correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX
    corecore