2,898 research outputs found
Thermodynamics of a three-flavor nonlocal Polyakov--Nambu--Jona-Lasinio model
The present work generalizes a nonlocal version of the Polyakov loop-extended
Nambu and Jona-Lasinio (PNJL) model to the case of three active quark flavors,
with inclusion of the axial U(1) anomaly. Gluon dynamics is incorporated
through a gluonic background field, expressed in terms of the Polyakov loop.
The thermodynamics of the nonlocal PNJL model accounts for both chiral and
deconfinement transitions. Our results obtained in mean-field approximation are
compared to lattice QCD results for quark flavors. Additional
pionic and kaonic contributions to the pressure are calculated in random phase
approximation. Finally, this nonlocal 3-flavor PNJL model is applied to the
finite density region of the QCD phase diagram. It is confirmed that the
existence and location of a critical point in this phase diagram depends
sensitively on the strength of the axial U(1) breaking interaction.Comment: 31 pages, 15 figures, minor changes compared to v
Sub-nanometer free electrons with topological charge
The holographic mask technique is used to create freely moving electrons with
quantized angular momentum. With electron optical elements they can be focused
to vortices with diameters below the nanometer range. The understanding of
these vortex beams is important for many applications. Here we present a theory
of focused free electron vortices. The agreement with experimental data is
excellent. As an immediate application, fundamental experimental parameters
like spherical aberration and partial coherence are determined.Comment: 4 pages, 5 figure
On the homomorphism order of labeled posets
Partially ordered sets labeled with k labels (k-posets) and their
homomorphisms are examined. We give a representation of directed graphs by
k-posets; this provides a new proof of the universality of the homomorphism
order of k-posets. This universal order is a distributive lattice. We
investigate some other properties, namely the infinite distributivity, the
computation of infinite suprema and infima, and the complexity of certain
decision problems involving the homomorphism order of k-posets. Sublattices are
also examined.Comment: 14 page
Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system III. Dipping in the low/hard state
We present an analysis of three Chandra High Energy Transmission Gratings
observations of the black hole binary Cyg X-1/HDE 226868 at different orbital
phases. The stellar wind that is powering the accretion in this system is
characterized by temperature and density inhomogeneities including structures,
or "clumps", of colder, more dense material embedded in the photoionized gas.
As these clumps pass our line of sight, absorption dips appear in the light
curve. We characterize the properties of the clumps through spectral changes
during various dip stages. Comparing the silicon and sulfur absorption line
regions (1.6-2.7 keV 7.7-4.6 {\AA}) in four levels of varying column
depth reveals the presence of lower ionization stages, i.e., colder or denser
material, in the deeper dip phases. The Doppler velocities of the lines are
roughly consistent within each observation, varying with the respective orbital
phase. This is consistent with the picture of a structure that consists of
differently ionized material, in which shells of material facing the black hole
shield the inner and back shells from the ionizing radiation. The variation of
the Doppler velocities compared to a toy model of the stellar wind, however,
does not allow us to pin down an exact location of the clump region in the
system. This result, as well as the asymmetric shape of the observed lines,
point at a picture of a complex wind structure.Comment: 19 pages, 15 figures, accepted for publication in A&
Ultrafast spectroscopy of single molecules
We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. At the single molecule level a wide range of exciton delocalisation lengths and energy redistribution times is revealed. Next, two color pump-probe experiments are presented as a step to addressing ultrafast energy transfer in individual complexes
The problem of repulsive quark interactions - Lattice versus mean field models
We calculate the 2nd and 4th order quark number susceptibilities at zero
baryochemical potential, using a PNJL approach and an approach which includes,
in a single model, quark and hadronic degrees of freedom. We observe that the
susceptibilities are very sensitive to possible quark-quark vector
interactions. Compared to lattice data our results suggest that above any
mean field type of repulsive vector interaction can be excluded from model
calculations. Below our results show only very weak sensitivity on the
strength of the quark and hadronic vector interaction. The best description of
lattice data around is obtained for a case of coexistence of hadronic and
quark degrees of freedom.Comment: 5 pages, 4 figure, version accepted by PL
Insecticidal activity of Boscia senegalensis (Pers.) Lam ex Poir. on Caryedon serratus (OI.) pest of stored groundnuts.
Hybridization of sub-gap states in one-dimensional superconductor/semiconductor Coulomb islands
We present measurements of one-dimensional superconductor-semiconductor
Coulomb islands, fabricated by gate confinement of a two-dimensional InAs
heterostructure with an epitaxial Al layer. When tuned via electrostatic side
gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair
mediated transport. When sub-gap states are present, Coulomb peak positions and
heights oscillate in a correlated way with magnetic field and gate voltage, as
predicted theoretically, with (anti) crossings in (parallel) transverse
magnetic field indicating Rashba-type spin-orbit coupling. Overall results are
consistent with a picture of overlapping Majorana zero modes in finite wires
- …
