727 research outputs found

    Fundamental Magnetic Properties and Structural Implications for Nanocrystalline Fe-Ti-N Thin Films

    Full text link
    The magnetization (M) as a function of temperature (T) from 2 to 300 K and in-plane field (H) up to 1 kOe, room temperature easy and hard direction in-plane field hysteresis loops for fields between -100 and +100 Oe, and 10 GHz ferromagnetic resonance (FMR) profiles have been measured for a series of soft-magnetic nano-crystalline 50 nm thick Fe-Ti-N films made by magnetron sputtering in an in-plane field. The nominal titanium concentration was 3 at. % and the nitrogen concentrations (xN) ranged from zero to 12.7 at. %. The saturation magnetization (Ms) vs. T data and the extracted exchange parameters as a function of xN are consistent with a lattice expansion due to the addition of interstitial nitrogen in the body-centered-cubic (bcc) lattice and a structural transition to body-centered-tetragonal (bct) in the 6-8 at. % nitrogen range. The hysteresis loop and FMR data show a consistent picture of the changes in both the uniaxial and cubic anisotropy as a function of xN. Films with xN > 1.9 at. % show an overall uniaxial anisotropy, with an anisotropy field parameter Hu that increases with xN. The corresponding dispersion averaged uniaxial anisotropy energy density parameter = HuMs/2 is a linear function of xN, with a rate of increase of 950 erg/cm3 per at. % nitrogen. The estimated uniaxial anisotropy energy per nitrogen atom is 30 J/mol, a value consistent with other systems. For xN below 6 at. %, the scaling of coercive force Hc data with the sixth power of the grain size D indicate a grain averaged effective cubic anisotropy energy density parameter that is about an order of magnitude smaller that the nominal K1 values for iron, and give a quantitative vs. D response that matches predictions for exchange coupled random grains with cubic anisotropy.Comment: 13 pages, 7 figure

    Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study

    Full text link
    In this paper a detailed numerical study (in frames of the Slonczewski formalism) of magnetization oscillations driven by a spin-polarized current through a thin elliptical nanoelement is presented. We show that a sophisticated micromagnetic model, where a polycrystalline structure of a nanoelement is taken into account, can explain qualitatively all most important features of the magnetization oscillation spectra recently observed experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely: existence of several equidistant spectral bands, sharp onset and abrupt disappearance of magnetization oscillations with increasing current, absence of the out-of-plane regime predicted by a macrospin model and the relation between frequencies of so called small-angle and quasichaotic oscillations. However, a quantitative agreement with experimental results (especially concerning the frequency of quasichaotic oscillations) could not be achieved in the region of reasonable parameter values, indicating that further model refinement is necessary for a complete understanding of the spin-driven magnetization precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions on the page have been changed to ensure correct placements of the figure caption

    The Projective Line Over the Finite Quotient Ring GF(2)[xx]/<x3x>< x^{3} - x> and Quantum Entanglement I. Theoretical Background

    Full text link
    The paper deals with the projective line over the finite factor ring R_R\_{\clubsuit} \equiv GF(2)[xx]/. The line is endowed with 18 points, spanning the neighbourhoods of three pairwise distant points. As R_R\_{\clubsuit} is not a local ring, the neighbour (or parallel) relation is not an equivalence relation so that the sets of neighbour points to two distant points overlap. There are nine neighbour points to any point of the line, forming three disjoint families under the reduction modulo either of two maximal ideals of the ring. Two of the families contain four points each and they swap their roles when switching from one ideal to the other; the points of the one family merge with (the image of) the point in question, while the points of the other family go in pairs into the remaining two points of the associated ordinary projective line of order two. The single point of the remaining family is sent to the reference point under both the mappings and its existence stems from a non-trivial character of the Jacobson radical, J_{\cal J}\_{\clubsuit}, of the ring. The factor ring R~_R_/J_\widetilde{R}\_{\clubsuit} \equiv R\_{\clubsuit}/ {\cal J}\_{\clubsuit} is isomorphic to GF(2) \otimes GF(2). The projective line over R~_\widetilde{R}\_{\clubsuit} features nine points, each of them being surrounded by four neighbour and the same number of distant points, and any two distant points share two neighbours. These remarkable ring geometries are surmised to be of relevance for modelling entangled qubit states, to be discussed in detail in Part II of the paper.Comment: 8 pages, 2 figure

    Structure peculiarities of cementite and their influence on the magnetic characteristics

    Full text link
    The iron carbide Fe3CFe_3C is studied by the first-principle density functional theory. It is shown that the crystal structure with the carbon disposition in a prismatic environment has the lowest total energy and the highest energy of magnetic anisotropy as compared to the structure with carbon in an octahedron environment. This fact explains the behavior of the coercive force upon annealing of the plastically deformed samples. The appearance of carbon atoms in the octahedron environment can be revealed by Mossbauer experiment.Comment: 10 pages, 3 figures, 3 tables. submitted to Phys.Rev.

    Harmonic Generation from Relativistic Plasma Surfaces in Ultra-Steep Plasma Density Gradients

    Get PDF
    Harmonic generation in the limit of ultra-steep density gradients is studied experimentally. Observations demonstrate that while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale-lengths (Lp/λ<1L_p/\lambda < 1) the absolute efficiency of the harmonics declines for the steepest plasma density scale-length Lp0L_p \to 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the Relativistic Oscillating Mirror (ROM) was estimated to be in the range of 10^{-4} - 10^{-6} of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale-length

    Projective Ring Line Encompassing Two-Qubits

    Full text link
    The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in GF(2) is found to fully accommodate the algebra of 15 operators - generalized Pauli matrices - characterizing two-qubit systems. The relevant sub-configuration consists of 15 points each of which is either simultaneously distant or simultaneously neighbor to (any) two given distant points of the line. The operators can be identified with the points in such a one-to-one manner that their commutation relations are exactly reproduced by the underlying geometry of the points, with the ring geometrical notions of neighbor/distant answering, respectively, to the operational ones of commuting/non-commuting. This remarkable configuration can be viewed in two principally different ways accounting, respectively, for the basic 9+6 and 10+5 factorizations of the algebra of the observables. First, as a disjoint union of the projective line over GF(2) x GF(2) (the "Mermin" part) and two lines over GF(4) passing through the two selected points, the latter omitted. Second, as the generalized quadrangle of order two, with its ovoids and/or spreads standing for (maximum) sets of five mutually non-commuting operators and/or groups of five maximally commuting subsets of three operators each. These findings open up rather unexpected vistas for an algebraic geometrical modelling of finite-dimensional quantum systems and give their numerous applications a wholly new perspective.Comment: 8 pages, three tables; Version 2 - a few typos and one discrepancy corrected; Version 3: substantial extension of the paper - two-qubits are generalized quadrangles of order two; Version 4: self-dual picture completed; Version 5: intriguing triality found -- three kinds of geometric hyperplanes within GQ and three distinguished subsets of Pauli operator

    PARP14 promotes the warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation

    Get PDF
    Most tumour cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and evade apoptosis. Intriguingly, the molecular mechanisms that link the Warburg effect with the suppression of apoptosis are not well understood. In this study, using loss-of-function studies in vitro and in vivo, we show that the anti-apoptotic protein poly(ADP-ribose) polymerase (PARP)14 promotes aerobic glycolysis in human hepatocellular carcinoma (HCC) by maintaining low activity of the pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. Notably, PARP14 is highly expressed in HCC primary tumours and associated with poor patient prognosis. Mechanistically, PARP14 inhibits the pro-apoptotic kinase JNK1, which results in the activation of PKM2 through phosphorylation of Thr365. Moreover, targeting PARP14 enhances the sensitization of HCC cells to anti-HCC agents. Our findings indicate that the PARP14-JNK1-PKM2 regulatory axis is an important determinant for the Warburg effect in tumour cells and provide a mechanistic link between apoptosis and metabolism

    Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand

    Get PDF
    Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for

    Internalisation Theory and outward direct investment by emerging market multinationals

    No full text
    The rise of multinational enterprises from emerging countries (EMNEs) poses an important test for theories of the multinational enterprise such as internalisation theory. It has been contended that new phenomena need new theory. This paper proposes that internalisation theory is appropriate to analyse EMNEs. This paper examines four approaches to EMNEs—international investment strategies, domestic market imperfections, international corporate networks and domestic institutions—and three case studies—Chinese outward FDI, Indian foreign acquisitions and investment in tax havens—to show the enduring relevance and predictive power of internalisation theory. This analysis encompasses many other approaches as special cases of internalisation theory. The use of internalisation theory to analyse EMNEs is to be commended, not only because of its theoretical inclusivity, but also because it has the ability to connect and to explain seemingly desperate phenomena
    corecore