2,682 research outputs found
Recommended from our members
Leptodactylus rugosus
Number of Pages: 5Integrative BiologyGeological Science
The Molecular Gas Distribution and Schmidt Law in M33
The relationship between the star formation rate and surface density of
neutral gas within the disk of M33 is examined with new imaging observations of
CO J=1-0 emission gathered with the FCRAO 14m telescope and IRAS HiRes images
of the 60 micron and 100 micron emission. The Schmidt law, Sigma_SFR ~
Sigma_gas^n, is constructed using radial profiles of the HI 21cm, CO, and far
infrared emission. A strong correlation is identified between the star
formation rate and molecular gas surface density. This suggests that the
condensation of giant molecular clouds is the limiting step to star formation
within the M33 disk. The corresponding molecular Schmidt index, n_{mol}, is
1.36 +/- 0.08. The star formation rate has a steep dependence on total mass gas
surface density, (Sigma_{HI}+Sigma_{H_2}), owing to the shallow radial profile
of the atomic gas which dominates the total gas surface density for most radii.
The disk pressure of the gas is shown to play a prominent role in regulating
the molecular gas fraction in M33.Comment: 19 pages + 5 figures. Accepted for publication in Ap
WFPC2 Observations of NGC 454: an Interacting Pair of Galaxies
We present WFPC2 images in the F450W, F606W and F814W filters of the
interacting pair of galaxies NGC 454. Our data indicate that the system is in
the early stages of interaction. A population of young star-clusters has formed
around the late component, and substantial amounts of gas have sunk into the
center of the earlier component, where it has not yet produced significant
visible star formation or nuclear activity. We have photometric evidence that
the star-clusters have strong line emission, which indicate the presence of a
substantial component of hot, massive stars which formed less than 5-10 Myrs
ago.Comment: 14 pages, 4 figures, Latex (AAS macros), ApJL in pres
Resistivity and Hall effect of LiFeAs: Evidence for electron-electron scattering
LiFeAs is unique among the broad family of FeAs-based superconductors,
because it is superconducting with a rather large K under
ambient conditions although it is a stoichiometric compound. We studied the
electrical transport on a high-quality single crystal. The resistivity shows
quadratic temperature dependence at low temperature giving evidence for strong
electron-electron scattering and a tendency towards saturation around room
temperature. The Hall constant is negative and changes with temperature, what
most probably arises from a van Hove singularity close to the Fermi energy in
one of the hole-like bands. Using band structure calculations based on angular
resolved photoemission spectra we are able to reproduce all the basic features
of both the resistivity as well as the Hall effect data.Comment: 6 pages, 3 figures included; V2 has been considerably revised and
contain a more detailed analysis of the Hall effect dat
Measurements of thermodynamic and transport properties of EuC: a low-temperature analogue of EuO
EuC is a ferromagnet with a Curie-temperature of K. It
is semiconducting with the particularity that the resistivity drops by about 5
orders of magnitude on cooling through , which is therefore called a
metal-insulator transition. In this paper we study the magnetization, specific
heat, thermal expansion, and the resistivity around this ferromagnetic
transition on high-quality EuC samples. At we observe well defined
anomalies in the specific heat and thermal expansion data.
The magnetic contributions of and can satisfactorily be
described within a mean-field theory, taking into account the magnetization
data. In zero magnetic field the magnetic contributions of the specific heat
and thermal expansion fulfill a Gr\"uneisen-scaling, which is not preserved in
finite fields. From an estimation of the pressure dependence of via
Ehrenfest's relation, we expect a considerable increase of under applied
pressure due to a strong spin-lattice coupling. Furthermore the influence of
weak off stoichiometries in EuC was studied. It is
found that strongly affects the resistivity, but hardly changes the
transition temperature. In all these aspects, the behavior of EuC strongly
resembles that of EuO.Comment: 7 pages, 6 figure
Recommended from our members
Role of the Srs2-Rad51 Interaction Domain in Crossover Control in Saccharomyces cerevisiae.
Saccharomyces cerevisiae Srs2, in addition to its well-documented antirecombination activity, has been proposed to play a role in promoting synthesis-dependent strand annealing (SDSA). Here we report the identification and characterization of an SRS2 mutant with a single amino acid substitution (srs2-F891A) that specifically affects the Srs2 pro-SDSA function. This residue is located within the Srs2-Rad51 interaction domain and embedded within a protein sequence resembling a BRC repeat motif. The srs2-F891A mutation leads to a complete loss of interaction with Rad51 as measured through yeast two-hybrid analysis and a partial loss of interaction as determined through protein pull-down assays with purified Srs2, Srs2-F891A, and Rad51 proteins. Even though previous work has shown that internal deletions of the Srs2-Rad51 interaction domain block Srs2 antirecombination activity in vitro, the Srs2-F891A mutant protein, despite its weakened interaction with Rad51, exhibits no measurable defect in antirecombination activity in vitro or in vivo Surprisingly, srs2-F891A shows a robust shift from noncrossover to crossover repair products in a plasmid-based gap repair assay, but not in an ectopic physical recombination assay. Our findings suggest that the Srs2 C-terminal Rad51 interaction domain is more complex than previously thought, containing multiple interaction sites with unique effects on Srs2 activity
The structure of molecular gas associated with NGC2264: wide-field 12CO and H2 imaging
We present wide-field, high-resolution imaging observations in 12CO 3-2 and
H2 1-0 S(1) towards a ~1 square degree region of NGC2264. We identify 46 H2
emission objects, of which 35 are new discoveries. We characterize several
cores as protostellar, reducing the previously observed ratio of
prestellar/protostellar cores in the NGC2264 clusters. The length of H2 jets
increases the previously reported spatial extent of the clusters. In each
cluster, <0.5% of cloud material has been perturbed by outflow activity. A
principal component analysis of the 12CO data suggests that turbulence is
driven on scales >2.6 pc, which is larger than the extent of the outflows. We
obtain an exponent alpha=0.74 for the size-linewidth relation, possibly due to
the high surface density of NGC2264. In this very active, mixed-mass star
forming region, our observations suggest that protostellar outflow activity is
not injecting energy and momentum on a large enough scale to be the dominant
source of turbulence.Comment: MNRAS accepte
A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer
The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.Peer Reviewe
The star-forming content of the W3 giant molecular cloud
We have surveyed a ~0.9-square-degree area of the W3 giant molecular cloud
and star-forming region in the 850-micron continuum, using the SCUBA bolometer
array on the James Clerk Maxwell Telescope. A complete sample of 316 dense
clumps was detected with a mass range from around 13 to 2500 Msun. Part of the
W3 GMC is subject to an interaction with the HII region and fast stellar winds
generated by the nearby W4 OB association. We find that the fraction of total
gas mass in dense, 850-micron traced structures is significantly altered by
this interaction, being around 5% to 13% in the undisturbed cloud but ~25 - 37%
in the feedback-affected region. The mass distribution in the detected clump
sample depends somewhat on assumptions of dust temperature and is not a simple,
single power law but contains significant structure at intermediate masses.
This structure is likely to be due to crowding of sources near or below the
spatial resolution of the observations. There is little evidence of any
difference between the index of the high-mass end of the clump mass function in
the compressed region and in the unaffected cloud. The consequences of these
results are discussed in terms of current models of triggered star formation.Comment: 13 pages, 8 figures, 1 table (full source table available on
request). Accepted for publication in Monthly Notices of the Royal
Astronomical Society (Main Journal
- …
