3,361 research outputs found
Double reference pulsed phase locked loop
A double reference pulse phase locked loop is described which measures the phase shift between tone burst signals initially derived from the same periodic signal source (voltage controlled oscillator) and delayed by different amounts because of two different paths. A first path is from the transducer to the surface of a sample and back. A second path is from the transducer to the opposite surface and back. A first pulse phase locked loop including a phase detector and a phase shifter forces the tone burst signal delayed by the second path in phase quadrature with the periodic signal source. A second pulse phase locked loop including a second phase detector forces the tone burst signals delayed by the first path into phase quadrature with the phase shifted periodic signal source
Impact tolerant material
A material is protected from acoustic shock waves generated by impacting projectiles by means of a backing. The backing has an acoustic impedance that efficiently couples the acoustic energy out of the material
CDS solid state phase insensitive ultrasonic transducer
A phase insensitive ultrasonic transducer which includes a CdS crystal that is annealed for a selected period of time and at a selected temperature to provide substantially maximum acoustic attenuation at the operating frequency of the transducer is described. Two electrodes are attached to the crystal with amplifier means and a signal processing system connected to one of the electrodes to provide an ultrasonic receiver
Acoustophoresis method and apparatus
A method and apparatus are provided for acoustophoresis, i.e., the separation of species via acoustic waves. An ultrasonic transducer applies an acoustic wave to one end of a sample container containing at least two species having different acoustic absorptions. The wave has a frequency tuned to or harmonized with the point of resonance of the species to be separated. This wave caused the species to be driven to an opposite end of the sample container for removal. A second ultrasonic transducer may be provided to apply a second, oppositely directed acoustic wave to prevent undesired streaming. In addition, a radio frequency tuned to the mechanical resonance and coupled with a magnetic field can serve to identify a species in a medium comprising species with similar absorption coefficients, whereby an acoustic wave having a frequency corresponding to this gyrational rate can then be applied to sweep the identified species to one end of the container for removal
Quantitative nondestructive evaluation: Requirements for tomorrow's reliability
Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice
Ultrasonic signal enhancement by resonator techniques
Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model
Phase Length Optical Phase-Locked-Loop Sensor
The invention is a device that provides a high resolution measurement of the change in optical phase length from the device optical system source to an optical reflector. The invention consists of a optical phase locked loop that uses a laser beam as a carrier of an intensity modulated energy source. The novelty of the invention appears to lie in the overall combination of elements which provide high resolution without loss of wide dynamic range. The invention does not depend on coherent reflection from a target, and thus can measure targets that do not have special preparation or corner reflectors. The use of carrier modulation achieves high resolution without the problems of high speed pulse duration systems. Thus the invention has the advantages of simplicity, low cost, and small size without sacrificing resolution
Nondestructive ultrasonic measurement of bolt preload using the pulsed-phase locked-loop interferometer
Achieving accurate preload in threaded fasteners is an important and often critical problem which is encountered in nearly all sectors of government and industry. Conventional tensioning methods which rely on torque carry with them the disadvantage of requiring constant friction in the fastener in order to accurately correlate torque to preload. Since most of the applied torque typically overcomes friction rather than tensioning the fastener, small variations in friction can cause large variations in preload. An instrument called a pulsed phase locked loop interferometer, which was recently developed at NASA Langley, has found widespread use for measurement of stress as well as material properties. When used to measure bolt preload, this system detects changes in the fastener length and sound velocity which are independent of friction. The system is therefore capable of accurately establishing the correct change in bolt tension. This high resolution instrument has been used for precision measurement of preload in critical fasteners for numerous applications such as the space shuttle landing gear and helicopter main rotors
Method for thermal monitoring subcutaneous tissue
A noninvasive accurate method for measuring the temperature of tissue beneath the surface of a living body is described. Ultrasonic signals are directed into beads of a material that are inserted into the tissue with a syringe. The reflected signals indicate the acoustic impedance or resonance frequency of the beads which in turn indicates the temperature of the tissue. A range of temperatures around the melting temperature of the material can be measured by this method
- …
