286 research outputs found

    Dilatancy controlled spatiotemporal slip evolution of a sealed fault with spatial variations of the pore pressure

    Get PDF
    A range of observations suggest the formation and maintenance of sealed and hence overpressured compartments in fluid-infiltrated fault zones. It is assumed that hydromechanical properties of regions with variable pore pressure states control the fault's stability and thus its characteristic response, that is, seismic or aseismic slip accumulation. We investigate in a systematic parameter space study the effects of spatial variations in pore pressure on spatiotemporal slip evolution along a hydraulically isolated fault plane. The 3-D continuum model is governed by rate-and-state friction and constitutive laws for porosity reduction. We show that the model response is sensitive to the degree of overpressurization and the efficiency of dilatant hardening mechanisms. Low pore pressures and small dilatancy effects result in unstable response types, whereas high pore pressures and large dilatant effects lead to stable and aseismic creep. Regions with an unstable response are shown to support most of the stresses accumulated during interseismic periods. Accelerated slip nucleates preferably in regions of low pore pressure. Statistical properties of model seismicity produce a wide range of event sizes for moderate and large earthquakes, in the case where dilatant mechanisms are inefficient. In case of efficient slip rate controlled porosity increase, less instabilities grow into large earthquakes. Final slip maps demonstrate the applicability of the chosen method to model seismicity controlled by frictional and hydraulic processes on a planar fault plane. The evolution of governing variables that depend on the pore pressure environment provide a conceptual basis for the interpretation of observed response characteristic

    Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models.

    Get PDF
    International audienceWe analyze global microseism excitation patterns between July 2000 and June 2001. Seismological observations are compared with modeling results to isolate robust activity features of relevant source processes. First, we use observations of microseism source locations estimated by Landès et al. (2010) based on array processing of ambient noise correlations. Second, we construct synthetic activity patterns by coupling sea state estimates derived from wave action models to the excitation theory for microseisms. The overall spatiotemporal evolution of both estimates is characterized by a seasonal character that is associated with strong activity during winter months. The distribution of landmass causes seasonal changes on the Northern Hemisphere (NH) to exceed the variability on the Southern Hemisphere (SH). Our systematic comparison of the two estimates reveals significant microseism excitation along coastlines and in the open ocean. Since coastal reflections are not accounted for in the modeling approach, the consistent mismatch between near-coastal observations and predictions suggests that relevant microseism energy arriving at the networks is generated in these areas. Simultaneously, systematic coincidence away from coastlines verifies the open ocean generation hypothesis. These conclusions are universal and robust with respect to the seismic network locations on the NH. The spatially homogeneous resolution of our synthetics provides a valuable resource for the assessment of the global microseism weather. Similar to previously identified hot spot areas in the North Atlantic, the modeled distributions hypothesize regions of strong localized activity on the SH, which are only partially confirmed by the analyzed data sets

    Near-surface structure of the North Anatolian Fault zone from Rayleigh and Love wave tomography using ambient seismic noise

    Get PDF
    We use observations of surface waves in the ambient noise field recorded at a dense seismic array to image the North Anatolian Fault zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip fault system extending ∼1200&thinsp;km across northern Turkey that poses a high level of seismic hazard, particularly to the city of Istanbul. We obtain maps of phase velocity variation using surface wave tomography applied to Rayleigh and Love waves and construct high-resolution images of S-wave velocity in the upper 10&thinsp;km of a 70&thinsp;×&thinsp;30&thinsp;km region around Lake Sapanca. We observe low S-wave velocities (&lt;2.5&thinsp;km&thinsp;s−1) associated with the Adapazari and Pamukova sedimentary basins, as well as the northern branch of the NAFZ. In the Armutlu Block, between the two major branches of the NAFZ, we image higher velocities (&gt;3.2&thinsp;km&thinsp;s−1) associated with a shallow crystalline basement. We measure azimuthal anisotropy in our phase velocity observations, with the fast direction seeming to align with the strike of the fault at periods shorter than 4&thinsp;s. At longer periods up to 10&thinsp;s, the fast direction aligns with the direction of maximum extension for the region (∼45∘). The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. Our results support the conclusion that the development of the NAFZ has exploited this pre-existing contrast in physical properties.</p

    Norbornadiene-quadricyclane photoswitches with enhanced solar spectrum match

    Get PDF
    Herein, we report monomeric and dimeric norbornadiene-quadricyclane molecular photoswitch systems intended for molecular solar thermal applications. A series of six new norbornadiene derivatives conjugated with benzothiadiazole as the acceptor unit and dithiafulvene as the donor unit were synthesized and fully characterized. The photoswitches were evaluated by experimentally and theoretically measuring optical absorption profiles and thermal conversion of quadricyclane to norbornadiene. Computational insight by density functional theory calculations at the M06-2X/def2-SVPD level of theory provided geometries, storage energies, UV-vis absorption spectra, and HOMO-LUMO levels that are used to describe the function of the molecular systems. The studied molecules exhibit absorption onset ranging from 416 nm to 595 nm due to a systemic change in their donor-acceptor character. This approach was advantageous due to the introduction of benzothiadiazole and the dimeric nature of molecular structures. The best-performing system has a half-life of 3 days with quantum yields over 50¿%.Peer ReviewedPostprint (published version

    Magmatism on rift flanks: insights from ambient noise phase velocity in Afar region

    Get PDF
    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading

    The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during<i> Caenorhabditis elegans</i> Meiosis

    Get PDF
    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis

    Pyrene functionalized norbornadiene-quadricyclane fluorescent photoswitches: characterization of their spectral properties and application in imaging of amyloid beta plaques

    Get PDF
    This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.Peer ReviewedPostprint (published version

    Protemic identification of Germline Proteins in Caenorhabditis elegans

    Get PDF
    Sexual reproduction involves fusion of 2 haploid gametes to form diploid offspring with genetic contributions from both parents. Gamete formation represents a unique developmental program involving the action of numerous germline-specific proteins. In an attempt to identify novel proteins involved in reproduction and embryonic development, we have carried out a proteomic characterization of the process in Caenorhabditis elegans. To identify candidate proteins, we used 2D gel electrophoresis (2DGE) to compare protein abundance in nucleus-enriched extracts from wild-type C. elegans, and in extracts from mutant worms with greatly reduced gonads (glp-4(bn2) worms reared at 25°C); 84 proteins whose abundance correlated with germline presence were identified. To validate candidates, we used feeding RNAi to deplete candidate proteins, and looked for reduction in fertility and/or germline cytological defects. Of 20 candidates so screened for involvement in fertility, depletion of 13 (65%) caused a significant reduction in fertility, and 6 (30%) resulted in sterility (\u3c5 % of wild-type fertility). Five of the 13 proteins with demonstrated roles in fertility have not previously been implicated in germline function. The high frequency of defects observed after RNAi depletion of candidate proteins suggests that this approach is effective at identifying germline proteins, thus contributing to our understanding of this complex organ

    Open-access platform to synthesize knowledge of ape conservation across sites

    Get PDF
    Despite the large body of literature on ape conservation, much of the data needed for evidence‐based conservation decision‐making is still not readily accessible and standardized, rendering cross‐site comparison difficult. To support knowledge synthesis and to complement the IUCN SSC Ape Populations, Environments and Surveys database, we created the A.P.E.S. Wiki (https://apeswiki.eva.mpg.de), an open‐access platform providing site‐level information on ape conservation status and context. The aim of this Wiki is to provide information and data about geographical ape locations, to curate information on individuals and organizations active in ape research and conservation, and to act as a tool to support collaboration between conservation practitioners, scientists, and other stakeholders. To illustrate the process and benefits of knowledge synthesis, we used the momentum of the update of the conservation action plan for western chimpanzees (Pan troglodytes verus) and began with this critically endangered taxon. First, we gathered information on 59 sites in West Africa from scientific publications, reports, and online sources. Information was compiled in a standardized format and can thus be summarized using a web scraping approach. We then asked experts working at those sites to review and complement the information (20 sites have been reviewed to date). We demonstrate the utility of the information available through the Wiki, for example, for studying species distribution. Importantly, as an open‐access platform and based on the well‐known wiki layout, the A.P.E.S. Wiki can contribute to direct and interactive information sharing and promote the efforts invested by the ape research and conservation community. The Section on Great Apes and the Section on Small Apes of the IUCN SSC Primate Specialist Group will guide and support the expansion of the platform to all small and great ape taxa. Similar collaborative efforts can contribute to extending knowledge synthesis to all nonhuman primate species
    corecore