7,756 research outputs found

    Single-crystal growth of the ternary BaFe2_2As2_2 phase using the vertical Bridgman technique

    Full text link
    Ternary Ba-Fe-As system has been studied to determine a primary solidification field of the BaFe2_2As2_2 phase. We found that the BaFe2_2As2_2 phase most likely melts congruently and primarily solidifies either in the FeAs excess or Bax_{x}As100x_{100-x} excess liquid. Knowing the primary solidification field, we have performed the vertical Bridgman growth using the starting liquid composition of Ba15_{15}Fe42.5_{42.5}As42.5_{42.5}. Large single crystals of the typical size 10x4x2 mm3^3 were obtained and their quality was confirmed by X-ray Laue and neutron diffraction.Comment: Submitted to Jpn. J. Appl. Phys.; revise

    Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow

    Full text link
    We theoretically derive the amplitude equations for a self-propelled droplet driven by Marangoni flow. As advective flow driven by surface tension gradient is enhanced, the stationary state becomes unstable and the droplet starts to move. The velocity of the droplet is determined from a cubic nonlinear term in the amplitude equations. The obtained critical point and the characteristic velocity are well supported by numerical simulations.Comment: 9 pages, 4 figure

    Core-tube morphology of multiwall carbon nanotubes

    Full text link
    The present paper investigates the cross-sectional morphology of Multiwalled Carbon Nanotubes (MWNTs) restrained radially and circumferentially by an infinite surrounding elastic medium, subjected to uniform external hydrostatic pressure. In this study, a two-dimensional plane strain model is developed, assuming no variation of load and deformation along the tube axis. We find some characteristic cross-sectional shapes from the elastic buckling analysis. The effect of the surrounded elastic medium on the cross-sectional shape which occurs due to pressure buckling is focused on by the comparison with the shape for no elastic medium case in our discussion. It is suggested that in no embedded elastic medium cases, the cross-sectional shapes of inner tubes maintain circle or oval; on the other hand, an embedded medium may cause inner tube corrugation modes especially when the number of shells for MWNTs is small.Comment: 7 figures, 2 figure

    miRNA-based rapid differentiation of purified neurons from hPSCs advancestowards quick screening for neuronal disease phenotypes in vitro

    Get PDF
    Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene

    Remark on integrating out heavy moduli in flux compactification

    Full text link
    We study two steps of moduli stabilization in type IIB flux compactification with gaugino condensations. We consider the condition that one can integrate out heavy moduli first with light moduli remaining. We give appendix, where detail study is carried out for potential minima of the model with a six dimensional compact space with h1,1=h2,1=1h_{1,1}=h_{2,1}=1, including the model, whose respective moduli with h1,1,h2,11h_{1,1}, h_{2,1} \neq 1 are identified.Comment: 16 pages, late

    Hydrodynamic collective effects of active proteins in biological membranes

    Get PDF
    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.Comment: 12 pages, 7 figure

    Overview of event-by-event analysis of high energy nuclear collisions

    Full text link
    The event-by-event analysis of high energy nuclear collisions aims at revealing the richness of the underlying event structures and provide unique measures of dynamical fluctuations associated with QGP phase transition. The major challenge in these studies is to separate the dynamical fluctuations from the many other sources which contribute to the measured values. We present the fluctuations in terms of event multiplicity, mean transverse momentum, elliptic flow, source sizes, particle ratios and net charge distributions. In addition, we discuss the effect of long range correlations, disoriented chiral condensates and presence of jets. A brief review of various probes used for fluctuation studies and available experimental results are presented.Comment: Invited talk at the "XIth International Workshop on Correlation and Fluctuation in Multiparticle Production", Nov 21-24, 2006, Hangzhou, China (19 pages
    corecore