69 research outputs found

    Phytotherapy in zoo animals

    Get PDF
    Phytotherapy is one of the oldest medical disciplines and was traditionally based on empiricism (Reichling et al., 2008). Nowadays, its use as an additional integral component of evidence based medicine is well accepted in human medicine (Finkelmann, 2009). Herbal remedies are generally characterised by a broad therapeutic index. They consist of multicomponent mixtures and act as multi-target drugs with pleiotropic effects. In Switzerland, veterinary phytotherapy has been relaunched in 2006 as a subunit of the Swiss Medical Society for Phytotherapy (SMGP-vet). Since 2012, the certificate of qualification in veterinary phytotherapy has been approved by the Swiss Veterinary Association (GST/SVS). Historically, one of the common approaches to gain insight into the medical effects of plants was self-medication. In non-human animals, self medication remains a controversial subject, because evidence is mostly anecdotal. A few experimentally verified cases of self-medication support the theoretical expectation that animals can and do make specific foraging decisions that function specifically to remediate illness (Huffman and Caton, 2001; Villalba et al., 2006; Singer et al., 2009). In zoological medicine, this concept has first been implemented by primate keeping institutions. Permanent access to selected medicinal plants suggested self medication and helped maintain the health of certain primate species (Cousins, 2006)

    Evaluation of a therapy protocol for the treatment of chronic digital dermatitis in European bison (Bison bonasus)

    Get PDF
    Digital dermatitis (DD) associated with the presence of multiple Treponema spp. was recently described for the first time in European bison (Bison bonasus). DD is characterized by skin inflammation in the distal foot area in various ungulates. The objective of this proof of concept study was to test a treatment protocol adopted from cattle for its applicability in this wildlife species using five animals. Keratolytic salicylic acid paste was administered topically under bandages for seven days to enable removal of the

    Glomerulocystic kidney in two red piranhas Pygocentrus nattereri.

    Get PDF
    Glomerulocystic kidney (GCK) is defined by a dilatation of the Bowman's space (greater than 2 times the normal size) of more than 5% of all glomeruli. Although GCK has been occasionally documented in dogs, cats, and humans with renal failure, in fish, reports of spontaneous GCK are rare. For the present study, 2 captive adult red piranhas Pygocentrus nattereri from a closed population were submitted for post-mortem examination. Clinical history included lethargy, inappetence, dyspnea, and altered buoyancy. Macroscopically, the fish displayed coelomic distension and ascites. The kidneys were markedly enlarged and dark yellow. Histologically, Bowman's space was noticeably dilated, occasionally with atrophic glomerular tufts. Degeneration and necrosis of the tubular epithelium, infiltration, and nephrocalcinosis were also present. To the authors' knowledge, this present study is the first report of spontaneously occurring GCK in red piranhas and freshwater fish in general. Despite being rare, GCK is a condition with the potential to impair the health of fish and mammals, and further studies are needed to shed new light on this condition

    Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs

    Get PDF
    The lemurs of Madagascar include numerous species characterized by folivory across several families. Many extant lemuriform folivores exist in sympatry in Madagascar’s remaining forests. These species avoid feeding competition by adopting different dietary strategies within folivory, reflected in behavioral, morphological, and microbiota diversity across species. These conditions make lemurs an ideal study system for understanding adaptation to leaf-eating. Most folivorous lemurs are also highly endangered. The significance of folivory for conservation outlook is complex. Though generalist folivores may be relatively well equipped to survive habitat disturbance, specialist folivores occupying narrow dietary niches may be less resilient. Characterizing the genetic bases of adaptation to folivory across species and lineages can provide insights into their differential physiology and potential to resist habitat change. We recently reported accelerated genetic change in RNASE1, a gene encoding an enzyme (RNase 1) involved in molecular adaptation in mammalian folivores, including various monkeys and sifakas (genus Propithecus; family Indriidae). Here, we sought to assess whether other lemurs, including phylogenetically and ecologically diverse folivores, might show parallel adaptive change in RNASE1 that could underlie a capacity for efficient folivory. We characterized RNASE1in 21 lemur species representing all five families and members of the three extant folivorous lineages: (1) bamboo lemurs (family Lemuridae), (2) sportive lemurs (family Lepilemuridae), and (3) indriids (family Indriidae). We found pervasive sequence change in RNASE1 across all indriids, a dN/dS value \u3e 3 in this clade, and evidence for shared change in isoelectric point, indicating altered enzymatic function. Sportive and bamboo lemurs, in contrast, showed more modest sequence change. The greater change in indriids may reflect a shared strategy emphasizing complex gut morphology and microbiota to facilitate folivory. This case study illustrates how genetic analysis may reveal differences in functional traits that could influence species’ ecology and, in turn, their resilience to habitat change. Moreover, our results support the body of work demonstrating that not all primate folivores are built the same and reiterate the need to avoid generalizations about dietary guild in considering conservation outlook, particularly in lemurs where such diversity in folivory has probably led to extensive specialization via niche partitioning

    Male-biased gastrointestinal parasitism in a nearly monomorphic mountain ungulate

    Get PDF
    Background: Pyrenean chamois (Rupicapra pyrenaica pyrenaica) is a nearly monomorphic mountain ungulate with an unbiased sex-specific overwinter adult survival. Few differences in gastrointestinal parasitism have been reported by coprology as yet. This study aims to assess diversity, prevalence, intensity of infection and aggregation of gastrointestinal nematodes in male and female adult chamois. We expect no differences in the parasite infection rates between sexes. Findings: Gastrointestinal tracts of 28 harvested Pyrenean chamois in the Catalan Pyrenees (autumn 2012 and 2013) were necropsied and sexual differences in the diversity and structure of parasite community, prevalence, intensity of infection, and richness were investigated. We found 25 helminth species belonging to 13 different genera. Conclusions: Contrary to our expectations, male chamois showed different parasite communities, higher prevalence, intensity of infection and richness than females. Such sexual differences were clear irrespective of age of individuals. Hence, male chamois must cope with a more diverse and abundant parasite community than females, without apparent biological cost. Further research will be required to confirm this hypothesis

    Tropical field stations yield high conservation return on investment

    Get PDF
    Conservation funding is currently limited; cost‐effective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic value. We assessed field stations’ conservation return on investment and explored the impact of COVID‐19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km 2 than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These “earth observatories” provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly
    corecore