130 research outputs found

    Phorbolester-activated Munc13-1 and ubMunc13-2 exert opposing effects on dense-core vesicle secretion

    Get PDF
    Munc13 proteins are priming factors for SNARE-dependent exocytosis, which are activated by diacylglycerol (DAG)-binding to their C1-domain. Several Munc13 paralogs exist, but their differential roles are not well understood. We studied the interdependence of phorbolesters (DAG mimics) with Munc13-1 and ubMunc13-2 in mouse adrenal chromaffin cells. Although expression of either Munc13-1 or ubMunc13-2 stimulated secretion, phorbolester was only stimulatory for secretion when ubMunc13-2 expression dominated, but inhibitory when Munc13-1 dominated. Accordingly, phorbolester stimulated secretion in wildtype cells, or cells overexpressing ubMunc13-2, but inhibited secretion in Munc13-2/Unc13b knockout (KO) cells or in cells overexpressing Munc13-1. Phorbolester was more stimulatory in the Munc13-1/Unc13a KO than in WT littermates, showing that endogenous Munc13-1 limits the effects of phorbolester. Imaging showed that ubMunc13-2 traffics to the plasma membrane with a time-course matching Ca2+-dependent secretion, and trafficking is independent of Synaptotagmin-7 (Syt7). However, in the absence of Syt7, phorbolester became inhibitory for both Munc13-1 and ubMunc13-2-driven secretion, indicating that stimulatory phorbolester x Munc13-2 interaction depends on functional pairing with Syt7. Overall, DAG/phorbolester, ubMunc13-2 and Syt7 form a stimulatory triad for dense-core vesicle priming

    Full vs Partial Market Coverage with Minimum Quality Standards

    Get PDF
    The consequences of the adoption of quality standards on the extent of market coverage is investigated by modelling a game between regulator and low-quality firm in a vertically differentiated duopoly. The game has a unique equilibrium in the most part of the parameter range. There exists a non-negligible range where the game has no equilibrium in pure strategies. This result questions the feasibility of MQS regulation when firms endogenously determine market coverage

    Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming

    Get PDF
    Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20–40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming as a prelude to fast and slow exocytosis triggering

    Oligophrenin-1: the link between calcium-regulated exocytosis and compensatory endocytosis in neuroendocrine cells

    Get PDF
    In neuroendocrine cells, hormones and neuropeptides are released from large-dense core vesicles (secretory granules) by calcium-regulated exocytosis. Following exocytosis, compensatory uptake of membrane is required to maintain membrane homeostasis and allow recycling of secretory vesicle membranes. How these cells initiate and regulate this compensatory endocytosis remains poorly understood. Our recent data suggests that oligophrenin-1 (OPHN1) is a link coupling calcium-regulated exocytosis to compensatory endocytosis of secretory granules in the adrenal chromaffin cells (Houy et al., 2015, J Neurosci. 2015, 35:11045-55). Here, we highlight the major evidence and discuss how OPHN1 could couple these two processes

    In vitro testing of the virus-like drug conjugate belzupacap sarotalocan (AU-011) on uveal melanoma suggests BAP1-related immunostimulatory capacity

    Get PDF
    PURPOSE. The virus-like drug conjugate belzupacap sarotalocan (AU-011), currently under clinical investigation for first-line treatment of primary uveal melanoma (UM), shows enhanced tumor specificity by targeting heparan sulfate proteoglycans (HSPG). Such a treatment may potentially lead to systemic immune responses. We studied the potential of AU-011 treatment to induce immunogenic cell death as the first step to induce systemic immunity. METHODS. We determined binding and uptake of AU-011 in ten primary and metastatic UM cell lines. The subcellular location of AU-011 was assessed by fluorescence microscopy. Following light activation (wavelength 690 nm) of AU-011, the half-maximal effective concentration (EC50) of AU-011 treatment and exposure of damage-associated molecu-lar patterns (DAMPs) were assessed using flow cytometry. DAMPs were measured by RNAseq. RESULTS. Fluorescence microscopy revealed most of the AU-011 was present in the cyto-plasm. AU-011 binding and uptake by UM cells increased over time, with a lower uptake in BAP1-negative than in BAP1-positive cell lines. AU-011 activation induced cell death across all UM cell lines with EC50 values at picomolar concentrations. The AU-011 concen-tration and total light dose (J/cm2) were the most important parameters for the observed cytotoxicity. Finally, light-activated AU-011 induced exposure of DAMPs calreticulin (CRT) and HSP90. CRT exposure by light-activated AU-011 as well as CRT RNA exposure were lower in BAP1-negative compared to BAP1-positive UM cell lines. CONCLUSIONS. AU-011 treatment at low picomolar range induces immunogenic cell death in all 10 UM cell lines. The in vitro cytotoxicity was accompanied by exposure of DAMPs (HSP90 and CRT), suggesting AU-011 may contribute to the development of systemic immunity and be a suitable candidate for combination with immunotherapy in vivo. AU -011 treatment was more effective against BAP1-positive cell lines, with a lower EC50 and CRTOphthalmic researc

    Base-excision repair pathway shapes 5-methylcytosine deamination signatures in pan-cancer genomes

    Get PDF
    Transition of cytosine to thymine in CpG dinucleotides is the most frequent type of mutation in cancer. This increased mutability is commonly attributed to the spontaneous deamination of 5-methylcytosine (5mC), which is normally repaired by the base-excision repair (BER) pathway. However, the contribution of 5mC deamination in the increasing diversity of cancer mutational signatures remains poorly explored. We integrate mutational signatures analysis in a large series of tumor whole genomes with lineage-specific epigenomic data to draw a detailed view of 5mC deamination in cancer. We uncover tumor type-specific patterns of 5mC deamination signatures in CpG and non-CpG contexts. We demonstrate that the BER glycosylase MBD4 preferentially binds to active chromatin and early replicating DNA, which correlates with lower mutational burden in these domains. We validate our findings by modeling BER deficiencies in isogenic cell models. Here, we establish MBD4 as the main actor responsible for 5mC deamination repair in humans

    Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin

    Get PDF
    Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A’s role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion

    SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response.

    Get PDF
    SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population

    The Effect of Modularity Representation and Presentation Medium on the Understandability of Business Process Models in BPMN

    Get PDF
    Many factors influence the creation of understandable business process models for an appropriate audience. Understandability of process models becomes critical particularly when a process is complex and its model is large in structure. Using modularization to represent such models hierarchically (e.g. using sub-processes) is considered to contribute to the understandability of these models. To investigate this assumption, we conducted an experiment that involved 2 large-scale real-life business process models that were modeled using BPMN v2.0 (Business Process Model and Notation). Each process was modeled in 3 modularity forms: fully-flattened, flattened where activities are clustered using BPMN groups, and modularized using separately viewed BPMN sub-processes. The objective is to investigate if and how different forms of modularity representation in BPMN collaboration diagrams influence the understandability of process models. In addition to the forms of modularity representation, we also looked into the presentation medium (paper vs. computer) as a factor that potentially influences model comprehension. Sixty business practitioners from a large organization participated in the experiment. The results of our experiment indicate that for business practitioners, to optimally understand a BPMN model in the form of a collaboration diagram, it is best to present the model in a ‘fully-flattened’ fashion (without using collapsed sub-processes in BPMN) in the ‘paper’ format
    corecore