10,528 research outputs found
Development of a Flame Resistant Silicone Rubber
Flame resistant silicone rubber using aluminum silicates and aromatic bromide
Flame resistant elastic elastomeric fiber
Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene
Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant
Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc
Structure-mechanics relationships of collagen fibrils in the Osteogenesis Imperfecta Mouse model
The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry.United States. Dept. of Defense. Presidential Early Career Award for Scientists and EngineersNational Science Foundation (U.S.) (CAREER Award
Flame retardant spandex type polyurethanes
Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned
Flame resistant elastomeric polymer development
Elastomeric products were developed for use in the space shuttle program, and investigations were conducted to improve the properties of elastomers developed in previous programs, and to evaluate the possibility of using lower-cost general purpose polymers. Products were fabricated and processed on conventional processing equipment; these products include: foams based on fluorinated rubber flame-retarded compounds with a density of 20-30 pounds/cubic foot for use as padding and in helmets; foams based on urethane for use in instrument packaging in the space shuttle; flexible and semi-rigid films of fluorinated rubber and neoprene compounds that would not burn in a 70% nitrogen, 30% oxygen atmosphere, and in a 30% nitrogen, 70% oxygen atmosphere, respectively for use in packaging or in laminates; coated fabrics which used both nylon and Kelvar fabric substrates, coated with either fluorinated or neoprene polymer compositions to meet specific levels of flame retardancy; and other flame-resistant materials
Recommended from our members
Development of an Integrated Governance Strategy for the Voluntary and Community Sector
This report on governance provides a framework for thinking about how policy makers, funders,regulators and advisers can all work with Board members and staff to enhance the effectiveness of nonprofit organisations. It was commissioned by the Active Community Unit (ACU) of the Home Office, in parallel with other reviews designed to improve the capacity of the voluntary and community sector, at a time when the sector plays an increasingly important role in the delivery of services using public funds. That role has recently been investigated in two Government reports, the Cross Cutting Review carried out by the Treasury, and the Strategy Unit review of charities and nonprofits. Our report proposes actions of three types: some that can be taken immediately, some that require further discussion with key interests, and some integration with the other ACU reviews. Taken together they provide the starting point for an evolving strategy to improve governance across the sector. We recommend ACU chairs a group charged with the responsibility for planning and implementing this. Our focus is on governance as 'the systems and processes concerned with ensuring the overall direction, supervision and accountability of an organisation'. This is often taken to mean the way that a Board, management committee or other governing body steers the overall development of an organisation, where day-to-day management is in the hands of staff or volunteers. Sometimes, of course, the committee and volunteers are the same. They – like all governing bodies – have to balance the interests of the organisation and those they are trying to serve, while being conscious of financial and legal responsibilities, and the requirements of funders and other supporters
First constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds
Massive O-type stars play a dominant role in our Universe, but many of their
properties remain poorly constrained. In the last decade magnetic fields have
been detected in all Galactic members of the distinctive Of?p class, opening
the door to a better knowledge of all O-type stars. With the aim of extending
the study of magnetic massive stars to nearby galaxies, to better understand
the role of metallicity in the formation of their magnetic fields and
magnetospheres, and to broaden our knowledge of the role of magnetic fields in
massive star evolution, we have carried out spectropolarimetry of five
extra-Galactic Of?p stars, as well as a couple of dozen neighbouring stars. We
have been able to measure magnetic fields with typical error bars from 0.2 to
1.0 kG, depending on the apparent magnitude and on weather conditions. No
magnetic field has been firmly detected in any of our measurements, but we have
been able to estimate upper limits to the field values of our target stars. One
of our targets, 2dFS 936, exhibited an unexpected strengthening of emission
lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period
with two photometric peaks and one spectroscopic maximum. The observed
strengthening of the emission lines of 2dFS 936, and the lack of detection of a
strong magnetic field in a star with such strong emission lines is at odd with
expectations. Together with the unusual periodic behaviour of BI 57, it
represents a challenge for the current models of Of?p stars. The limited
precision that we obtained in our field measurements (in most cases as a
consequence of poor weather) has led to field-strength upper limits that are
substantially larger than those typically measured in Galactic magnetic O
stars. Further higher precision observations and monitoring are clearly
required.Comment: Accepted by A&
FUSE Observations of a Full Orbit of Hercules X-1: Signatures of Disk, Star, and Wind
We observed an entire 1.7 day orbit of the X-ray binary Hercules X-1 with the
Far Ultraviolet Spectroscopic Explorer (FUSE). Changes in the O VI 1032,1037
line profiles through eclipse ingress and egress indicate a Keplerian accretion
disk spinning prograde with the orbit. These observations may show the first
double-peaked accretion disk line profile to be seen in the Hercules X-1
system. Doppler tomograms of the emission lines show a bright spot offset from
the Roche lobe of the companion star HZ Her, but no obvious signs of the
accretion disk. Simulations show that the bright spot is too far offset from
the Roche lobe to result from uneven X-ray heating of its surface. The absence
of disk signatures in the tomogram can be reproduced in simulations which
include absorption from a stellar wind. We attempt to diagnose the state of the
emitting gas from the C III 977, C III 1175, and N III 991 emission lines. The
latter may be enhanced through Bowen fluorescence.Comment: Accepted for publication in The Astrophysical Journa
A Search for Intrinsic Polarization in O Stars with Variable Winds
New observations of 9 of the brightest northern O stars have been made with
the Breger polarimeter on the 0.9~m telescope at McDonald Observatory and the
AnyPol polarimeter on the 0.4~m telescope at Limber Observatory, using the
Johnson-Cousins UBVRI broadband filter system. Comparison with earlier
measurements shows no clearly defined long-term polarization variability. For
all 9 stars the wavelength dependence of the degree of polarization in the
optical range can be fit by a normal interstellar polarization law. The
polarization position angles are practically constant with wavelength and are
consistent with those of neighboring stars. Thus the simplest conclusion is
that the polarization of all the program stars is primarily interstellar.
The O stars chosen for this study are generally known from ultraviolet and
optical spectroscopy to have substantial mass loss rates and variable winds, as
well as occasional circumstellar emission. Their lack of intrinsic polarization
in comparison with the similar Be stars may be explained by the dominance of
radiation as a wind driving force due to higher luminosity, which results in
lower density and less rotational flattening in the electron scattering inner
envelopes where the polarization is produced. However, time series of
polarization measurements taken simultaneously with H-alpha and UV spectroscopy
during several coordinated multiwavelength campaigns suggest two cases of
possible small-amplitude, periodic short-term polarization variability, and
therefore intrinsic polarization, which may be correlated with the more widely
recognized spectroscopic variations.Comment: LaTeX2e, 22 pages including 11 tables; 12 separate gif figures; uses
aastex.cls preprint package; accepted by The Astronomical Journa
- …
