236 research outputs found
Scaling and interleaving of sub-system Lyapunov exponents for spatio-temporal systems
The computation of the entire Lyapunov spectrum for extended dynamical
systems is a very time consuming task. If the system is in a chaotic
spatio-temporal regime it is possible to approximately reconstruct the Lyapunov
spectrum from the spectrum of a sub-system in a very cost effective way. In
this work we present a new rescaling method, which gives a significantly better
fit to the original Lyapunov spectrum. It is inspired by the stability analysis
of the homogeneous evolution in a one-dimensional coupled map lattice but
appears to be equally valid in a much wider range of cases. We evaluate the
performance of our rescaling method by comparing it to the conventional
rescaling (dividing by the relative sub-system volume) for one and
two-dimensional lattices in spatio-temporal chaotic regimes. In doing so we
notice that the Lyapunov spectra for consecutive sub-system sizes are
interleaved and we discuss the possible ways in which this may arise. Finally,
we use the new rescaling to approximate quantities derived from the Lyapunov
spectrum (largest Lyapunov exponent, Lyapunov dimension and Kolmogorov-Sinai
entropy) finding better convergence as the sub-system size is increased than
with conventional rescaling.Comment: 18 pages, double column, REVTeX, 27 embedded postscript figures with
psfig. Submitted to Chao
Magnetization and susceptibility of ferrofluids
A second-order Taylor series expansion of the free energy functional provides
analytical expressions for the magnetic field dependence of the free energy and
of the magnetization of ferrofluids, here modelled by dipolar Yukawa
interaction potentials. The corresponding hard core dipolar Yukawa reference
fluid is studied within the framework of the mean spherical approximation. Our
findings for the magnetic and phase equilibrium properties are in quantitative
agreement with previously published and new Monte Carlo simulation data.Comment: 8 pages including 4 figure
Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals
In antecedent experiments the electron screening energies of the d+d
reactions in metallic environments have been determined to be enhanced by an
order of magnitude in comparison to the case of gaseous deuterium targets. The
analytical models describing averaged material properties have not been able to
explain the experimental results so far. Therefore, a first effort has been
undertaken to simulate the dynamics of reacting deuterons in a metallic lattice
by means of an ab-initio Hartree-Fock calculation of the total electrostatic
force between the lattice and the successively approaching deuterons via path
integration. The calculations have been performed for Li and Ta, clearly
showing a migration of electrons from host metallic to the deuterium atoms.
However, in order to avoid more of the necessary simplifications in the model
the utilization of a massive parallel supercomputer would be required.Comment: 11 pages, 12 figures, svjour class. To be published in Eur. Phys. J.
Magnetic properties of colloidal suspensions of interacting magnetic particles
We review equilibrium thermodynamic properties of systems of magnetic
particles like ferrofluids in which dipolar interactions play an important
role. The review is focussed on two subjects: ({\em i}) the magnetization with
the initial magnetic susceptibility as a special case and ({\em ii}) the phase
transition behavior. Here the condensation ("gas/liquid") transition in the
subsystem of the suspended particles is treated as well as the
isotropic/ferromagnetic transition to a state with spontaneously generated
long--range magnetic order.Comment: Review. 62 pages, 4 figure
Convection in colloidal suspensions with particle-concentration-dependent viscosity
The onset of thermal convection in a horizontal layer of a colloidal
suspension is investigated in terms of a continuum model for binary-fluid
mixtures where the viscosity depends on the local concentration of colloidal
particles. With an increasing difference between the viscosity at the warmer
and the colder boundary the threshold of convection is reduced in the range of
positive values of the separation ratio psi with the onset of stationary
convection as well as in the range of negative values of psi with an
oscillatory Hopf bifurcation. Additionally the convection rolls are shifted
downwards with respect to the center of the horizontal layer for stationary
convection (psi>0) and upwards for the Hopf bifurcation (psi<0).Comment: 8 pages, 6 figures, submitted to European Physical Journal
Magnetization of ferrofluids with dipolar interactions - a Born--Mayer expansion
For ferrofluids that are described by a system of hard spheres interacting
via dipolar forces we evaluate the magnetization as a function of the internal
magnetic field with a Born--Mayer technique and an expansion in the dipolar
coupling strength. Two different approximations are presented for the
magnetization considering different contributions to a series expansion in
terms of the volume fraction of the particles and the dipolar coupling
strength.Comment: 19 pages, 11 figures submitted to PR
Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment
Convection structures in binary fluid mixtures are investigated for positive
Soret coupling in the driving regime where solutal and thermal contributions to
the buoyancy forces compete. Bifurcation properties of stable and unstable
stationary square, roll, and crossroll (CR) structures and the oscillatory
competition between rolls and squares are determined numerically as a function
of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where
the oscillation period grows in integer steps as is found
and elucidated to be an entrainment process.Comment: 7 pages, 4 figure
Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media
This study concerns a situation when measurements of the nonresonant
cross-section of nuclear reactions appear highly dependent on the environment
in which the particles interact. An appealing example discussed in the paper is
the interaction of a deuteron beam with a target of deuterated metal Ta. In
these experiments, the reaction cross section for d(d,p)t was shown to be
orders of magnitude greater than what the conventional model predicts for the
low-energy particles. In this paper we take into account the influence of
quantum effects due to the Heisenberg uncertainty principle for particles in a
non-ideal medium elastically interacting with the medium particles. In order to
calculate the nuclear reaction rate in the non-ideal environment we apply both
the Monte Carlo technique and approximate analytical calculation of the Feynman
diagram using nonrelativistic kinetic Green's functions in the medium which
correspond to the generalized energy and momentum distribution functions of
interacting particles. We show a possibility to reduce the 12-fold integral
corresponding to this diagram to a fivefold integral. This can significantly
speed up the computation and control accuracy. Our calculations show that
quantum effects significantly influence reaction rates such as p +7Be, 3He
+4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the
classical ones for the interior of the Sun and supernova stars. The possibility
to observe the theoretical predictions under laboratory conditions is
discussed
Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study
We use lattice Boltzmann simulations, in conjunction with Ewald summation
methods, to investigate the role of hydrodynamic interactions in colloidal
suspensions of dipolar particles, such as ferrofluids. Our work addresses
volume fractions of up to 0.20 and dimensionless dipolar interaction
parameters of up to 8. We compare quantitatively with Brownian
dynamics simulations, in which many-body hydrodynamic interactions are absent.
Monte Carlo data are also used to check the accuracy of static properties
measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic
interactions slow down both the long-time and the short-time decays of the
intermediate scattering function , for wavevectors close to the peak of
the static structure factor , by a factor of roughly two. The long-time
slowing is diminished at high interaction strengths whereas the short-time
slowing (quantified via the hydrodynamic factor ) is less affected by the
dipolar interactions, despite their strong effect on the pair distribution
function arising from cluster formation. Cluster formation is also studied in
transient data following a quench from ; hydrodynamic interactions
slow the formation rate, again by a factor of roughly two
- …
