1,027 research outputs found
Temperature and gravity of the pulsating extreme helium star LSS 3184 (BX Cir) through its pulsation cycle
We report the analysis of optical spectra of the extreme helium star LSS 3184
(BX Cir) to determine its effective temperature and gravity throughout its
pulsation cycle. The spectra were also used to measure its chemical abundances.
We report rest gravity, log g = 3.38 +/- 0.02, and a chemical abundance
mixture consistent with those reported earlier in a study using an optical
spectrum with lower spectral resolution and a lower signal to noise ratio. Our
analysis decreases the upper limit for the H abundance to H < 6.0 (mass
fraction < 7.1 x 10^-7). Our gravity corresponds to stellar mass M = 0.47 +/-
0.03 M_sun.
We find that the effective log g varies through the pulsation cycle with an
amplitude of 0.28 dex. The effective gravity is smaller than the rest gravity
except when the star is very near its minimum radius. The change in effective
gravity is primarily caused by acceleration of the stellar surface.
Based on the optical spectra, we find the temperature varies with an
amplitude of 3450 K. We find a time averaged mean temperature, 23390 +/- 90 K,
consistent with that found in the earlier optical spectrum study. The mean
temperature is 1750 K hotter than that found using combined ultraviolet spectra
and V and R photometry and the variation amplitude is larger. This discrepancy
is similar to that found for the extreme helium star V652 Her.Comment: 7 pages, 6 figures, LaTeX, to be published in A&
Morphological Properties of PPNs: Mid-IR and HST Imaging Surveys
We will review our mid-infrared and HST imaging surveys of the circumstellar
dust shells of proto-planetary nebulae. While optical imaging indirectly probes
the dust distribution via dust-scattered starlight, mid-IR imaging directly
maps the distribution of warm dust grains. Both imaging surveys revealed
preferencially axisymmetric nature of PPN dust shells, suggesting that
axisymmetry in planetary nebulae sets in by the end of the asymptotic giant
branch phase, most likely by axisymmetric superwind mass loss. Moreover, both
surveys yielded two morphological classes which have one-to-one correspondence
between the two surveys, indicating that the optical depth of circumstellar
dust shells plays an equally important role as the inclination angle in
determining the morphology of the PPN shells.Comment: 6 pages + 8 figures, to appear in the proceedings of the conference,
"Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution",
Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorny.
Figures have been degraded to minimize the total file siz
The first binary star evolution model producing a Chandrasekhar mass white dwarf
Today, Type Ia supernovae are essential tools for cosmology, and recognized
as major contributors to the chemical evolution of galaxies. The construction
of detailed supernova progenitor models, however, was so far prevented by
various physical and numerical difficulties in simulating binary systems with
an accreting white dwarf component, e.g., unstable helium shell burning which
may cause significant expansion and mass loss. Here, we present the first
binary evolution calculation which models both stellar components and the
binary interaction simultaneously, and where the white dwarf mass grows up to
the Chandrasekhar limit by mass accretion. Our model starts with a 1.6 Msun
helium star and a 1.0 Msun CO white dwarf in a 0.124 day orbit. Thermally
unstable mass transfer starts when the CO core of the helium star reaches 0.53
Msun, with mass transfer rates of 1...8 times 10^{-6} Msun/yr. The white dwarf
burns the accreted helium steadily until the white dwarf mass has reached ~ 1.3
Msun and weak thermal pulses follow until carbon ignites in the center when the
white dwarf reaches 1.37 Msun. Although the supernova production rate through
this channel is not well known, and this channel can not be the only one as its
progenitor life time is rather short (~ 10^7 - 10^8 yr), our results indicate
that helium star plus white dwarf systems form a reliable route for producing
Type Ia supernovae.Comment: 4 pages, 5 figure
Carbon-Oxygen White Dwarfs Accreting CO-Rich Matter I: A Comparison Between Rotating and Non-Rotating Models
We investigate the lifting effect of rotation on the thermal evolution of CO
WDs accreting CO-rich matter. We find that rotation induces the cooling of the
accreting star so that the delivered gravitational energy causes a greater
expansion with respect to the standard non-rotating case. The increase in the
surface radius produces a decrease in the surface value of the critical angular
velocity and, therefore, the accreting WD becomes gravitationally unbound
(Roche instability). This occurrence is due to an increase in the total angular
momentum of the accreting WD and depends critically on the amount of specific
angular momentum deposited by the accreted matter. If the specific angular
momentum of the accreted matter is equal to that of the outer layers of the
accreting structure, the Roche instability occurs well before the accreting WD
can attain the physical conditions for C-burning. If the values of both initial
angular velocity and accretion rate are small, we find that the accreting WD
undergoes a secular instability when its total mass approaches 1.4 Msun. At
this stage, the ratio between the rotational and the gravitational binding
energy of the WD becomes of the order of 0.1, so that the star must deform by
adopting an elliptical shape. In this case, since the angular velocity of the
WD is as large as 1 rad/s, the anisotropic mass distribution induces the loss
of rotational energy and angular momentum via GWR. We find that, independent of
the braking efficiency, the WD contracts and achieves the physical conditions
suitable for explosive C-burning at the center so that a type Ia supernova
event is produced.Comment: 39 pages, 22 eps-figures; accepted for publication in Astrophysical
Journa
Hydrogen-Accreting Carbon-Oxygen White Dwarfs of Low Mass: Thermal and Chemical Behavior of Burning Shells
Numerical experiments have been performed to investigate the thermal behavior
of a cooled down white dwarf of initial mass M_{\rm WD} = 0.516 M_{\sun}
which accretes hydrogen-rich matter with Z = 0.02 at the rate
\msun \yrm1, typical for a recurrent hydrogen shell flash regime. The evolution
of the main physical quantities of a model during a pulse cycle is examined in
detail. From selected models in the mass range
\msunend, we derive the borders in the - plane of the
steady state accretion regime when hydrogen is burned at a constant rate as
rapidly as it is accreted. The physical properties during a hydrogen shell
flash in white dwarfs accreting hydrogen-rich matter with metallicities Z =
0.001 and Z = 0.0001 are also studied. For a fixed accretion rate, a decrease
in the metallicity of the accreted matter leads to an increase in the thickness
of the hydrogen-rich layer at outburst and a decrease in the hydrogen-burning
shell efficiency. In the - plane, the borders of the
steady state accretion band are critically dependent on the metallicity of the
accreted matter: on decreasing the metallicity, the band is shifted to lower
accretion rates and its width in is reduced.Comment: 31 pages and 10 Postscript figures; Accepted for publication on Ap
Galactic planetary nebulae with Wolf-Rayet nuclei. II. A consistent observational data set
We present high resolution spectrophotometric data for 34 galactic planetary
nebulae with [WC] nuclei (WRPNe).The sample includes PNe with early and late
[WC] stars and some WELS. Physical conditions and chemical abundances have been
derived and expansion velocities were estimated for most objects of the sample.
A statistical study was developed to find fundamental relationships between the
nebular and central star parameters.We found evidence for a strong unexpected
electron temperature gradient in WRPNe which is related to nebular excitation.
Abundance ratios indicate that there seems to be no preferential stellar mass
for the WR phenomenon to occur in the nucleus of a planetary nebula. The PNe M
1-25 and M 1-32 were found to have very small Ne/O ratios.Our data confirm the
trend of the electron density decreasing with decreasing spectral type, which
was interpreted as evidence that [WC] stars evolve from late to early [WC]
types. On the other hand, the expansion velocities do not show the increase
with decreasing spectral type, that one might expect in such a scenario. Two
objects with very late [WC] central stars, K 2-16 and PM 1-188, do not follow
the general density sequence, being of very low density for their spectral
types. We suggest that the stars either underwent a late helium flash (the
``born again'' scenario) or that they have had a particularly slow evolution
from the AGB. The 6 WELS of our sample follow the same density vs. [WC]-type
relation as the bona fide WRPNe, but they tend to have smaller expansion
velocities. The comparison between the WRPNe in the Magellanic Clouds and in
the Galaxy indicates that metallicity affects the [WR] phenomenon in central
stars of planetary nebulae.Comment: 20 pages, including 2 figures and 3 tables. Paper accepted in
Astronomy and Astrophysics, 200
The population of close double white dwarfs in the Galaxy
We present a new model for the Galactic population of close double white
dwarfs. The model accounts for the suggestion of the avoidance of a substantial
spiral-in during mass transfer between a giant and a main-sequence star of
comparable mass and for detailed cooling models. It agrees well with the
observations of the local sample of white dwarfs if the initial binary fraction
is close to 50% and an ad hoc assumption is made that white dwarfs with mass
less than about 0.3 solar mass cool faster than the models suggest. About 1000
white dwarfs brighter than V=15 have to be surveyed for detection of a pair
which has total mass greater than the Chandrasekhar mass and will merge within
10 Gyr.Comment: 15 pages, 7 figures, to appear in Proc. ``The influence of binaries
on stellar population studies'', Brussels, August 2000 (Kluwer, D. Vanbeveren
ed.
On the helium content of Galactic globular clusters via the R parameter
We estimate the empirical R parameter in 26 Galactic Globular Clusters
covering a wide metallicity range, imaged by WFPC2 on board the HST. The
improved spatial resolution permits a large fraction of the evolved stars to be
measured and permits accurate assessment of radial populaton gradients and
completeness corrections. In order to evaluate both the He abundance and the He
to metal enrichment ratio, we construct a large set of evolutionary models by
adopting similar metallicities and different He contents. We find an absolute
He abundance which is lower than that estimated from spectroscopic measurements
in HII regions and from primordial nucleosynthesis models. This discrepancy
could be removed by adopting a C12O16 nuclear cross section about a factor of
two smaller than the canonical value, although also different assumptions for
mixing processes can introduce systematical effects. The trend in the R
parameter toward solar metallicity is consistent with an upper limit to the He
to metal enrichment ratio of the order of 2.5.Comment: accepted for pubblication on Ap
Probing the Galactic Bulge with deep Adaptive Optics imaging: the age of NGC 6440
We present first results of a pilot project aimed at exploiting the
potentiality of ground based adaptive optics imaging in the near infrared to
determine the age of stellar clusters in the Galactic Bulge. We have used a
combination of high resolution adaptive optics (ESO-VLT NAOS-CONICA) and
wide-field (ESO-NTT-SOFI) photometry of the metal rich globular cluster NGC
6440 located towards the inner Bulge, to compute a deep color magnitude diagram
from the tip of the Red Giant Branch down to J~22$, two magnitudes below the
Main Sequence Turn Off (TO). The magnitude difference between the TO level and
the red Horizontal Branch has been used as an age indicator. It is the first
time that such a measurement for a bulge globular cluster has been obtained
with a ground based telescope. From a direct comparison with 47 Tuc and with a
set of theoretical isochrones, we concluded that NGC 6440 is old and likely
coeval to 47 Tuc. This result adds a new evidence that the Galactic Bulge is ~2
Gyr younger at most than the pristine, metal poor population of the Galactic
Halo
Observation of Fragile-to-Strong Dynamic Crossover in Protein Hydration Water
At low temperatures proteins exist in a glassy state, a state which has no
conformational flexibility and shows no biological functions. In a hydrated
protein, at and above 220 K, this flexibility is restored and the protein is
able to sample more conformational sub-states, thus becomes biologically
functional. This 'dynamical' transition of protein is believed to be triggered
by its strong coupling with the hydration water, which also shows a similar
dynamic transition. Here we demonstrate experimentally that this sudden switch
in dynamic behavior of the hydration water on lysozyme occurs precisely at 220
K and can be described as a Fragile-to-Strong dynamic crossover (FSC). At FSC,
the structure of hydration water makes a transition from predominantly
high-density (more fluid state) to low-density (less fluid state) forms derived
from existence of the second critical point at an elevated pressure.Comment: 6 pages (Latex), 4 figures (Postscript
- …
