353 research outputs found
Ambipolar suppression of superconductivity by ionic gating in optimally-doped BaFe2(As,P)2 ultrathin films
Superconductivity (SC) in the Ba-122 family of iron-based compounds can be
controlled by aliovalent or isovalent substitutions, applied external pressure,
and strain, the combined effects of which are sometimes studied within the same
sample. Most often, the result is limited to a shift of the SC dome to
different doping values. In a few cases, the maximum SC transition at optimal
doping can also be enhanced. In this work, we study the combination of charge
doping together with isovalent P substitution and strain by performing ionic
gating experiments on BaFe(AsP) ultrathin films. We
show that the polarization of the ionic gate induces modulations to the
normal-state transport properties that can be mainly ascribed to surface charge
doping. We demonstrate that ionic gating can only shift the system away from
the optimal conditions, as the SC transition temperature is suppressed by both
electron and hole doping. We also observe a broadening of the resistive
transition, which suggests that the SC order parameter is modulated
nonhomogeneously across the film thickness, in contrast with earlier reports on
charge-doped standard BCS superconductors and cuprates.Comment: 10 pages, 5 figure
Neuronal circuitry for pain processing in the dorsal horn
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
Inhibitory Effects of Prior Low-dose X-irradiation on Ischemia-reperfusion Injury in Mouse Paw
We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation
Angle-resolved, mass-selected ion spectroscopy of carbon K-shell excited CF3CCH
Total photoabsorption cross section and peak assignments were presented for CF3CCH in the carbon K-shell region. Anisotropy parameters of fragment ions obtained by means of an angle-resolved mass spectrometer were helpful to the peak assignments of the K-shell excitation into π and σ states. Kinetic energy distributions of the H+, CH+, C2H+ and CF2+ fragment ions were fitted using a Gaussian function with one peak, while those of the CF3+ fragment ion were analyzed by use of two and three components for the C K-shell excitation of the CF3 and C2H sides, respectively. The kinetic energy distribution of the CF3+ fragment ion was reasonably understood by the consideration that photofragmentation of the K-shell excited molecule probably competes with intramolecular energy relaxation in which the CF3 group works as an effective energy reservoir. The yields of the CFn+ (n = 2,3), C3FH2+ and C3F2H2+ ions were dependent on the site of excitation
Angle-resolved, mass-selected ion spectroscopy of carbon K-shell excited CF3CCH
Total photoabsorption cross section and peak assignments were presented for CF3CCH in the carbon K-shell region. Anisotropy parameters of fragment ions obtained by means of an angle-resolved mass spectrometer were helpful to the peak assignments of the K-shell excitation into π and σ states. Kinetic energy distributions of the H+, CH+, C2H+ and CF2+ fragment ions were fitted using a Gaussian function with one peak, while those of the CF3+ fragment ion were analyzed by use of two and three components for the C K-shell excitation of the CF3 and C2H sides, respectively. The kinetic energy distribution of the CF3+ fragment ion was reasonably understood by the consideration that photofragmentation of the K-shell excited molecule probably competes with intramolecular energy relaxation in which the CF3 group works as an effective energy reservoir. The yields of the CFn+ (n = 2,3), C3FH2+ and C3F2H2+ ions were dependent on the site of excitation
On the ionization energy of CF3SF5 in the valence region measured by angle-resolved photoelectron spectroscopy
Ionization energies for valence electrons of CF3SF5 were measured in the 12-35 eV region by means of angle-resolved photoelectron spectroscopy. The observed ionization energies were basically consistent with previous ones measured by threshold photoelectron and HeI photoelectron spectroscopy, and the ionization levels at 22.60, 26.92 and 27.86 eV were newly observed. Asymmetry parameter derived at hν = 684.7 eV was a constant of β = 1.02 ± 0.04 in the ionization energy lower than 20 eV, suggesting that lone pair electron of F atom is probably released through 2p → εd like electron emission. Characters of the 22 valence bands were elucidated with the help of ab initio calculations and of the nature of valence orbitals for CF4 and SF
Variation in resonant Auger yields into the 1G4•nl states of Kr across the L3 threshold
Resonant Auger transitions into 1G4•nl states following Kr 2p3/2 electron excitation have been measured using monochromatized undulator radiation and a hemispherical electron energy analyzer. A clear identification of electron peaks was made for the 1G4•5s, 1G4•4d, 1G4•5d and so forth when the photon energy approached to the ionization threshold. The formation of the 1G4•4d state was found over a relatively wide energy range across the threshold, because of the short lifetime of the 2p hole and of shake effects in electron emission processes. The angular dependence of these decays showed little effect on the polarization direction of the incident photon, which suggests that little anisotropy is related to that of the normal Auger transition into the 1G4 state
Vibrational effect on the fragmentation dynamics of the C K-shell excited CF2CH2
Photoabsorption cross-sections of CF2CH2 were measured in the carbon K-edge region and linear time-of-flight mass spectra were acquired at some photon energies across the two π* peaks. The kinetic energy distributions of CH2+ and CF2+ with two components were deduced from the analysis of the mass spectra. The CH2+ ion with high kinetic energies increases with the extent of vibrational excitation of the CF 1s-1π* state, indicating that molecular vibrations play an important role in the photofragmentation of the inner-shell excited molecule
Additive Protection by Antioxidant and Apoptosis-Inhibiting Effects on Mosquito Cells with Dengue 2 Virus Infection
Cytopathic effects (CPEs) in mosquito cells are generally trivial compared to those that occur in mammalian cells, which usually end up undergoing apoptosis during dengue virus (DENV) infection. However, oxidative stress was detected in both types of infected cells. Despite this, the survival of mosquito cells benefits from the upregulation of genes related to antioxidant defense, such as glutathione S transferase (GST). A second defense system, i.e., consisting of antiapoptotic effects, was also shown to play a role in protecting mosquito cells against DENV infection. This system is regulated by an inhibitor of apoptosis (IAP) that is an upstream regulator of caspases-9 and -3. DENV-infected C6/36 cells with double knockdown of GST and the IAP showed a synergistic effect on activation of these two caspases, causing a higher rate of apoptosis (>20%) than those with knockdown of each single gene (∼10%). It seems that the IAP acts as a second line of defense with an additional effect on the survival of mosquito cells with DENV infection. Compared to mammalian cells, residual hydrogen peroxide in DENV-infected C6/36 cells may signal for upregulation of the IAP. This novel finding sheds light on virus/cell interactions and their coevolution that may elucidate how mosquitoes can be a vector of DENV and probably most other arboviruses in nature
Molecular deformation in the O 1s[-1] 2πu excited states of CO2 probed by the triple-differential measurement of fragment ions
Measurement of mass-, energy-, and angle-resolved fragment ions reveals that the β value for C+ with kinetic energy ≥~3 eV is ∼0.9 in the region of the O 1s→2πu excitation and that the β value for O+ with kinetic energy ≥~4 eV varies from -0.23 to -0.57 across the O 1s→2πu resonance. These findings postulate that the CO2 molecule excited to the lower branch of the vibronically split O 1s[-1]2πu excited states deforms into a bent geometry while the molecule excited to the higher branch remains in a linear geometry
- …
