263 research outputs found
Quasi one dimensional He inside carbon nanotubes
We report results of diffusion Monte Carlo calculations for both He
absorbed in a narrow single walled carbon nanotube (R = 3.42 \AA) and strictly
one dimensional He. Inside the tube, the binding energy of liquid He is
approximately three times larger than on planar graphite. At low linear
densities, He in a nanotube is an experimental realization of a
one-dimensional quantum fluid. However, when the density increases the
structural and energetic properties of both systems differ. At high density, a
quasi-continuous liquid-solid phase transition is observed in both cases.Comment: 11 pages, 3ps figures, to appear in Phys. Rev. B (RC
Atomic Scale Sliding and Rolling of Carbon Nanotubes
A carbon nanotube is an ideal object for understanding the atomic scale
aspects of interface interaction and friction. Using molecular statics and
dynamics methods different types of motion of nanotubes on a graphite surface
are investigated. We found that each nanotube has unique equilibrium
orientations with sharp potential energy minima. This leads to atomic scale
locking of the nanotube.
The effective contact area and the total interaction energy scale with the
square root of the radius. Sliding and rolling of nanotubes have different
characters. The potential energy barriers for sliding nanotubes are higher than
that for perfect rolling. When the nanotube is pushed, we observe a combination
of atomic scale spinning and sliding motion. The result is rolling with the
friction force comparable to sliding.Comment: 4 pages (two column) 6 figures - one ep
Electronic response of aligned multishell carbon nanotubes
We report calculations of the effective electronic response of aligned
multishell carbon nanotubes. A local graphite-like dielectric tensor is
assigned to every point of the multishell tubules, and the effective transverse
dielectric function of the composite is computed by solving Maxwell's
equations. Calculations of both real and imaginary parts of the effective
dielectric function are presented, for various values of the filling fraction
and the ratio of the internal and external radii of hollow tubules. Our full
calculations indicate that the experimentally measured macroscopic dielectric
function of carbon nanotube materials is the result of a strong electromagnetic
coupling between the tubes, which cannot be accounted for with the use of
simplified effective medium theories. The presence of surface plasmons is
investigated, and both optical absorption cross sections and energy-loss
spectra of aligned tubules are calculated.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes
On the basis of the spin-polarized density functional theory calculations, we
demonstrate that partially-open carbon nanotubes (CNTs) observed in recent
experiments have rich electronic and magnetic properties which depend on the
degree of the opening. A partially-open armchair CNT is converted from a metal
to a semiconductor, and then to a spin-polarized semiconductor by increasing
the length of the opening on the wall. Spin-polarized states become
increasingly more stable than nonmagnetic states as the length of the opening
is further increased. In addition, external electric fields or chemical
modifications are usable to control the electronic and magnetic properties of
the system. We show that half-metallicity may be achieved and the spin current
may be controlled by external electric fields or by asymmetric
functionalization of the edges of the opening. Our findings suggest that
partially-open CNTs may offer unique opportunities for the future development
of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So
Realistic description of electron-energy loss spectroscopy for One-Dimensional SrCuO
We investigate the electron-energy loss spectrum of one-dimensional undoped
CuO chains within an extended multi-band Hubbard model and an extended
one-band Hubbard model, using the standard Lanczos algorithm. Short-range
intersite Coulomb interactions are explicitly included in these models, and
long-range interactions are treated in random-phase approximation. The results
for the multi-band model with standard parameter values agree very well with
experimental spectra of SrCuO. In particular, the width of the main
structure is correctly reproduced for all values of momentum transfer. It is
shown for both models that intersite Coulomb interactions mainly lead to an
energy shift of the spectra. We find no evidence for enhanced intersite
interactions in SrCuO.Comment: 4 pages, 4 figure
Electron-phonon interaction in ultrasmall-radius carbon nanotubes
We perform analysis of the band structure, phonon dispersion, and
electron-phonon interactions in three types of small-radius carbon nanotubes.
We find that the (5,5) can be described well by the zone-folding method and the
electron-phonon interaction is too small to support either a charge-density
wave or superconductivity at realistic temperatures. For ultra-small (5,0) and
(6,0) nanotubes we find that the large curvature makes these tubes metallic
with a large density of states at the Fermi energy and leads to unusual
electron-phonon interactions, with the dominant coupling coming from the
out-of-plane phonon modes. By combining the frozen-phonon approximation with
the RPA analysis of the giant Kohn anomaly in 1d we find parameters of the
effective Fr\"{o}lich Hamiltonian for the conduction electrons. Neglecting
Coulomb interactions, we find that the (5,5) CNT remains stable to
instabilities of the Fermi surface down to very low temperatures while for the
(5,0) and (6,0) CNTs a CDW instability will occur. When we include a realistic
model of Coulomb interaction we find that the charge-density wave remains
dominant in the (6,0) CNT with around 5 K while the
charge-density wave instability is suppressed to very low temperatures in the
(5,0) CNT, making superconductivity dominant with transition temperature around
one Kelvin.Comment: 20 pages. Updated 7/23/0
Element Coordinates and the Utility in Large Displacement Analysis of a Space Frame
Defining element coordinates in space frame, element end deformations become statically clear from the energy principle. Therefore, the deformations can be expressed by nodal displacement without any approximation. The paper indicates that the exact expressions of the deformations and the geometrical stiffness strictly based on the equations makes large displacement analysis of space frame possible with robustness on the computation
Chirality effects in carbon nanotubes
We consider chirality related effects in optical, photogalvanic and
electron-transport properties of carbon nanotubes. We show that these
properties of chiral nanotubes are determined by terms in the electron
effective Hamiltonian describing the coupling between the electron wavevector
along the tube principal axis and the orbital momentum around the tube
circumference. We develop a theory of photogalvanic effects and a theory of
d.c. electric current, which is linear in the magnetic field and quadratic in
the bias voltage. Moreover, we present analytic estimations for the natural
circular dichroism and magneto-spatial effect in the light absorption.Comment: 23 pages, 3 figure
Effective electronic response of a system of metallic cylinders
The electronic response of a composite consisting of aligned metallic
cylinders in vacuum is investigated, on the basis of photonic band structure
calculations. The effective long-wavelength dielectric response function is
computed, as a function of the filling fraction. A spectral representation of
the effective response is considered, and the surface mode strengths and
positions are analyzed. The range of validity of a Maxwell-Garnett-like
approach is discussed, and the impact of our results on absorption spectra and
electron energy-loss phenomena is addressed.Comment: 15 pages, 6 figures, to appear in Phys. Rev.
Aberration-corrected electron microscopy of nanoparticles
The early history of scanning transmission electron microscopy (STEM) is reviewed as a way to frame the technical issues that make aberration correction an essential upgrade for the study of nanoparticles using STEM. The principles of aberration correction are
explained, and the use of aberration-corrected microscopy in the study of nanostructures is exemplified in order to remark the features and challenges in the use of this measuring techniqu
- …
