274 research outputs found

    Bone collecting by striped hyaenas, Hyaena hyaena, in Israel

    Get PDF
    Main articleDifferences in bone collecting behaviour of three species of hyaena and porcupines are discussed. Observations on feeding behaviour of striped hyaenas are described as well as their habit of carrying pieces away particularly if feeding cubs at maternity dens. At one maternity den near Arad the floor of the main cavern was littered with bones which covered an area of 40 m2. Of this 2,0 m2 was sampled and found to contain 267 bones and bone fragments from no fewer than 57 individuals, mainly of domestic species such as camel, donkey, caprovines and dogs.Non

    The Droplet State and the Compressibility Anomaly in Dilute 2D Electron Systems

    Full text link
    We investigate the space distribution of carrier density and the compressibility of two-dimensional (2D) electron systems by using the local density approximation. The strong correlation is simulated by the local exchange and correlation energies. A slowly varied disorder potential is applied to simulate the disorder effect. We show that the compressibility anomaly observed in 2D systems which accompanies the metal-insulator transition can be attributed to the formation of the droplet state due to disorder effect at low carrier densities.Comment: 4 pages, 3 figure

    The microscopic nature of localization in the quantum Hall effect

    Full text link
    The quantum Hall effect arises from the interplay between localized and extended states that form when electrons, confined to two dimensions, are subject to a perpendicular magnetic field. The effect involves exact quantization of all the electronic transport properties due to particle localization. In the conventional theory of the quantum Hall effect, strong-field localization is associated with a single-particle drift motion of electrons along contours of constant disorder potential. Transport experiments that probe the extended states in the transition regions between quantum Hall phases have been used to test both the theory and its implications for quantum Hall phase transitions. Although several experiments on highly disordered samples have affirmed the validity of the single-particle picture, other experiments and some recent theories have found deviations from the predicted universal behaviour. Here we use a scanning single-electron transistor to probe the individual localized states, which we find to be strikingly different from the predictions of single-particle theory. The states are mainly determined by Coulomb interactions, and appear only when quantization of kinetic energy limits the screening ability of electrons. We conclude that the quantum Hall effect has a greater diversity of regimes and phase transitions than predicted by the single-particle framework. Our experiments suggest a unified picture of localization in which the single-particle model is valid only in the limit of strong disorder

    Local Charge of the nu=5/2 Fractional Quantum Hall State

    Full text link
    Electrons in two dimensions and strong magnetic fields effectively lose their kinetic energy and display exotic behavior dominated by Coulomb forces. When the ratio of electrons to magnetic flux quanta in the system is near 5/2, the unique correlated phase that emerges is predicted to be gapped with fractionally charged quasiparticles and a ground state degeneracy that grows exponentially as these quasiparticles are introduced. Interestingly, the only way to transform between the many ground states would be to braid the fractional excitations around each other, a property with applications in quantum information processing. Here we present the first observation of localized quasiparticles at nu=5/2, confined to puddles by disorder. Using a local electrometer to compare how quasiparticles at nu=5/2 and nu=7/3 charge these puddles, we are able to extract the ratio of local charges for these states. Averaged over several disorder configurations and samples, we find the ratio to be 4/3, suggesting that the local charges are e/3 at seven thirds and e/4 at five halves, in agreement with theoretical predictions. This confirmation of localized e/4 quasiparticles is necessary for proposed interferometry experiments to test statistics and computational ability of the state at nu=5/2.Comment: 6 pages, 4 figures corrected titl

    Compressibility of a two-dimensional hole gas in tilted magnetic field

    Full text link
    We have measured compressibility of a two-dimensional hole gas in p-GaAs/AlGaAs heterostructure, grown on a (100) surface, in the presence of a tilted magnetic field. It turns out that the parallel component of magnetic field affects neither the spin splitting nor the density of states. We conclude that: (a) g-factor in the parallel magnetic field is nearly zero in this system; and (b) the level of the disorder potential is not sensitive to the parallel component of the magnetic field

    Nonlinear screening and percolative transition in a two-dimensional electron liquid

    Full text link
    A novel variational method is proposed for calculating the percolation threshold, the real-space structure, and the thermodynamical compressibility of a disordered two-dimensional electron liquid. Its high accuracy is verified against prior numerical results and newly derived exact asymptotics. The inverse compressibility is shown to have a strongly asymmetric minimum at a density that is approximately the triple of the percolation threshold. This implies that the experimentally observed metal-insulator transition takes place well before the percolation point is reached.Comment: 4 pages, 2 figures. (v2) minor changes (v3) reference added (v4) few more references adde

    Observation and Spectroscopy of a Two-Electron Wigner Molecule in an Ultra-Clean Carbon Nanotube

    Get PDF
    Coulomb interactions can have a decisive effect on the ground state of electronic systems. The simplest system in which interactions can play an interesting role is that of two electrons on a string. In the presence of strong interactions the two electrons are predicted to form a Wigner molecule, separating to the ends of the string due to their mutual repulsion. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet to date a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultra-clean suspended carbon nanotube to realize this system in a tunable potential. Using tunneling spectroscopy we measure the excitation spectra of two interacting carriers, electrons or holes, and identify seven low-energy states characterized by their spin and isospin quantum numbers. These states fall into two multiplets according to their exchange symmetries. The formation of a strongly-interacting Wigner molecule is evident from the small energy splitting measured between the two multiplets, that is quenched by an order of magnitude compared to the non-interacting value. Our ability to tune the two-electron state in space and to study it for both electrons and holes provides an unambiguous demonstration of the fundamental Wigner molecule state.Comment: SP and FK contributed equally to this wor

    Investigations on unconventional aspects in the quantum Hall regime of narrow gate defined channels

    Full text link
    We report on theoretical and experimental investigations of the integer quantized Hall effect in narrow channels at various mobilities. The Hall bars are defined electrostatically in two-dimensional electron systems by biasing metal gates on the surfaces of GaAs/AlGaAs heterostructures. In the low mobility regime the classical Hall resistance line is proportional to the magnetic field as measured in the high temperature limit and cuts through the center of each Hall plateau. For high mobility samples we observe in linear response measurements, that this symmetry is broken and the classical Hall line cuts the plateaus not at the center but at higher magnetic fields near the edges of the plateaus. These experimental results confirm the unconventional predictions of a model for the quantum Hall effect taking into account mutual screening of charge carriers within the Hall bar. The theory is based on solving the Poisson and Schr\"odinger equations in a self-consistent manner.Comment: EP2DS-17 Proceedings, 6 Pages, 2 Figure

    Long-Range Order in Electronic Transport through Disordered Metal Films

    Full text link
    Ultracold atom magnetic field microscopy enables the probing of current flow patterns in planar structures with unprecedented sensitivity. In polycrystalline metal (gold) films we observe long-range correlations forming organized patterns oriented at +/- 45 deg relative to the mean current flow, even at room temperature and at length scales orders of magnitude larger than the diffusion length or the grain size. The preference to form patterns at these angles is a direct consequence of universal scattering properties at defects. The observed amplitude of the current direction fluctuations scales inversely to that expected from the relative thickness variations, the grain size and the defect concentration, all determined independently by standard methods. This indicates that ultracold atom magnetometry enables new insight into the interplay between disorder and transport

    Physics of the Insulating Phase in the Dilute Two-Dimensional Electron Gas

    Full text link
    We propose to use the radio-frequency single-electron transistor as an extremely sensitive probe to detect the time-periodic ac signal generated by sliding electron lattice in the insulating state of the dilute two-dimensional electron gas. We also propose to use the optically-pumped NMR technique to probe the electron spin structure of the insulating state. We show that the electron effective mass and spin susceptibility are strongly enhanced by critical fluctuations of electron lattice in the vicinity of the metal-insulator transition, as observed in experiment.Comment: 5 pages, 2 figures, uses jetpl.cls (included). v.4: After publication in JETP Letters, two plots comparing theory and experiment are added, and a minor error is correcte
    corecore