714 research outputs found
Gain and Loss in Quantum Cascade Lasers
We report gain calculations for a quantum cascade laser using a fully
self-consistent quantum mechanical approach based on the theory of
nonequilibrium Green functions. Both the absolute value of the gain as well as
the spectral position at threshold are in excellent agreement with experimental
findings for T=77 K. The gain strongly decreases with temperature.Comment: 7 pages, 3 figures directly include
Combined use of x-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells
X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging
Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule
We shall revisit the conventional adiabatic or Markov approximation, which
--contrary to the semiclassical case-- does not preserve the positive-definite
character of the corresponding density matrix, thus leading to highly
non-physical results. To overcome this serious limitation, originally pointed
out and partially solved by Davies and co-workers almost three decades ago, we
shall propose an alternative more general adiabatic procedure, which (i) is
physically justified under the same validity restrictions of the conventional
Markov approach, (ii) in the semiclassical limit reduces to the standard
Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus
providing a reliable/robust treatment of energy-dissipation and dephasing
processes in electronic quantum devices. Unlike standard master-equation
formulations, the dependence of our approximation on the specific choice of the
subsystem (that include the common partial trace reduction) does not threaten
positivity, and quantum scattering rates are well defined even in case the
subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure
Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures
The transport and gain properties of quantum cascade (QC) structures are
investigated using a nonequilibrium Green's function (NGF) theory which
includes quantum effects beyond a Boltzmann transport description. In the NGF
theory, we include interface roughness, impurity, and electron-phonon
scattering processes within a self-consistent Born approximation, and
electron-electron scattering in a mean-field approximation. With this theory we
obtain a description of the nonequilibrium stationary state of QC structures
under an applied bias, and hence we determine transport properties, such as the
current-voltage characteristic of these structures. We define two contributions
to the current, one contribution driven by the scattering-free part of the
Hamiltonian, and the other driven by the scattering Hamiltonian. We find that
the dominant part of the current in these structures, in contrast to simple
superlattice structures, is governed mainly by the scattering Hamiltonian. In
addition, by considering the linear response of the stationary state of the
structure to an applied optical field, we determine the linear susceptibility,
and hence the gain or absorption spectra of the structure. A comparison of the
spectra obtained from the more rigorous NGF theory with simpler models shows
that the spectra tend to be offset to higher values in the simpler theories.Comment: 44 pages, 16 figures, appearing in Physical Review B Dec 200
Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule
We shall revisit the conventional adiabatic or Markov approximation, which
--contrary to the semiclassical case-- does not preserve the positive-definite
character of the corresponding density matrix, thus leading to highly
non-physical results. To overcome this serious limitation, originally pointed
out and partially solved by Davies and co-workers almost three decades ago, we
shall propose an alternative more general adiabatic procedure, which (i) is
physically justified under the same validity restrictions of the conventional
Markov approach, (ii) in the semiclassical limit reduces to the standard
Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus
providing a reliable/robust treatment of energy-dissipation and dephasing
processes in electronic quantum devices. Unlike standard master-equation
formulations, the dependence of our approximation on the specific choice of the
subsystem (that include the common partial trace reduction) does not threaten
positivity, and quantum scattering rates are well defined even in case the
subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure
Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule
We shall revisit the conventional adiabatic or Markov approximation, which
--contrary to the semiclassical case-- does not preserve the positive-definite
character of the corresponding density matrix, thus leading to highly
non-physical results. To overcome this serious limitation, originally pointed
out and partially solved by Davies and co-workers almost three decades ago, we
shall propose an alternative more general adiabatic procedure, which (i) is
physically justified under the same validity restrictions of the conventional
Markov approach, (ii) in the semiclassical limit reduces to the standard
Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus
providing a reliable/robust treatment of energy-dissipation and dephasing
processes in electronic quantum devices. Unlike standard master-equation
formulations, the dependence of our approximation on the specific choice of the
subsystem (that include the common partial trace reduction) does not threaten
positivity, and quantum scattering rates are well defined even in case the
subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure
Quantum-Information Processing with Semiconductor Macroatoms
An all optical implementation of quantum information processing with
semiconductor macroatoms is proposed. Our quantum hardware consists of an array
of semiconductor quantum dots and the computational degrees of freedom are
energy-selected interband optical transitions. The proposed quantum-computing
strategy exploits exciton-exciton interactions driven by ultrafast sequences of
multi-color laser pulses. Contrary to existing proposals based on charge
excitations, the present all-optical implementation does not require the
application of time-dependent electric fields, thus allowing for a
sub-picosecond, i.e. decoherence-free, operation time-scale in realistic
state-of-the-art semiconductor nanostructures.Comment: 11 pages, 5 figures, to be published in Phys. Rev. Lett., significant
changes in the text and new simulations (figure 3
Mandatory HIV Testing of Accused Rapists: Whose Rights Are We Protecting? An Ethical and Legal Analysis
At times, the law appears confusing and unfair. Criminal defendants receive the strictest of all standards of review: guilt beyond a reasonable doubt. But why are the accused afforded greater constitutional protections than the victim? One reason may be found by examining the intent of the authors of the United States Constitution. Our founding fathers wanted Americans to escape the kind of persecution suffered under English rule. From its inception, the Constitution and the laws that followed were based on public policy and ethics. This legal precedence is used to interpret new laws. However, because of precedence, laws often do not reflect the prevailing public opinion of all Americans. Law may not always make sense, but it plays an important role in codifying and uniformly resolving many dilemmas, including biomedical and ethical issues. One such dilemma that has come under increasing scrutiny is whether an alleged sex offender may be forced to submit to an HIV test upon the victim\u27s request. Although the victim may wish to know whether she has been exposed to the deadly virus, the offender has a constitutional right against unreasonable searches and seizures. Using the hypothetical in Section II, this paper will attempt to explain and resolve this dilemma through ethical principles. This resolution will then be compared with the numerous statutes that address the issue and the courts\u27 resolutions
Mandatory HIV Testing of Accused Rapists: Whose Rights Are We Protecting? An Ethical and Legal Analysis
At times, the law appears confusing and unfair. Criminal defendants receive the strictest of all standards of review: guilt beyond a reasonable doubt. But why are the accused afforded greater constitutional protections than the victim? One reason may be found by examining the intent of the authors of the United States Constitution. Our founding fathers wanted Americans to escape the kind of persecution suffered under English rule. From its inception, the Constitution and the laws that followed were based on public policy and ethics. This legal precedence is used to interpret new laws. However, because of precedence, laws often do not reflect the prevailing public opinion of all Americans. Law may not always make sense, but it plays an important role in codifying and uniformly resolving many dilemmas, including biomedical and ethical issues. One such dilemma that has come under increasing scrutiny is whether an alleged sex offender may be forced to submit to an HIV test upon the victim\u27s request. Although the victim may wish to know whether she has been exposed to the deadly virus, the offender has a constitutional right against unreasonable searches and seizures. Using the hypothetical in Section II, this paper will attempt to explain and resolve this dilemma through ethical principles. This resolution will then be compared with the numerous statutes that address the issue and the courts\u27 resolutions
Gain in quantum cascade lasers and superlattices: A quantum transport theory
Gain in current-driven semiconductor heterostructure devices is calculated
within the theory of nonequilibrium Green functions. In order to treat the
nonequilibrium distribution self-consistently the full two-time structure of
the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The
results are independent of the choice of the electromagnetic field if the
variation of the self-energy is taken into account. Excellent quantitative
agreement is obtained with the experimental gain spectrum of a quantum cascade
laser. Calculations for semiconductor superlattices show that the simple 2-time
miniband transport model gives reliable results for large miniband widths at
room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review
- …
